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Preface

Preface

In this volume I present some examples of surface integrals, cf. also Calculus 2b, Functions of Several
Variables. Since my aim also has been to demonstrate some solution strategy I have as far as possible
structured the examples according to the following form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of ∧ I shall either write
“and”, or a comma, and instead of ∨ I shall write “or”. The arrows ⇒ and ⇔ are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
15th October 2007
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1 Surface integral

Example 1.1 Calculate in each of the following cases the given surface integral over a surface F ,
which is the graph of a function in two variables, thus

F = {(x, y, z) | (x, y) ∈ E, z = Z(x, y)}.
1) The surface integral

∫
F
√

1 + (x + y + 1)2 dS, where

Z(x, y) =
1√
2

ln(1 + x + y), (x, y) ∈ [0, 1] × [0, 1].

2) The surface integral
∫
F
√

x2 + y2 dS, where

Z(x, y) = 2 − x2 − y2, for x2 + y2 ≤ 2.

3) The surface integral
∫
F z dS, where

Z(x, y) = 2 − x2 − y2, for x2 + y2 ≤ 2.

4) The surface integral
∫
F x2
√

1 + x2 + y2 dS, where

Z(x, y) = xy, for x2 + y2 ≤ 1.

5) The surface integral
∫
F (a + z) dS, where

Z(x, y) =
x2 − y2

a
, for x2 + y2 ≤ 2a2.

6) The surface integral
∫
F

1√
a2 + 4x2 + 4y2

dS, where

Z(x, y) =
x2 − y2

a
, for x2 + y2 ≤ 2a2.

7) The surface integral
∫
F
√

a2 + 4x2 + 4y2 dS, where

Z(x, y) =
x2 − y2

a
, for x2 + y2 ≤ 2a2.

8) The surface integral
∫
F z3 dS, where

Z(x, y) =
√

2a2 − x2 − y2 for − π

4
≤ ϕ ≤ π

4
og 0 ≤ � ≤ a cos(2ϕ).

A Surface integrals in rectangular coordinates.

D Find the weight function

‖N‖ =

√
1 +
(

∂g

∂x

)2

+
(

∂g

∂y

)2

=
√

1 + ‖ 
 g‖2,

and then compute the surface integral.

I 1) We get from g(x, y) =
1√
2

ln(1 + x + y) that


g =
1√
2
· 1
1 + x + y

(1, 1),

 Surface integral
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Figure 1: The surface of Example 1.1.1.

and as x, y ≥ 0,

√
1 + ‖ 
 f‖2 =

√
1 +

1
(1 + x + y)2

=

√
1 + (1 + x + y)2

1 + x + y
,

 Surface integral

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/pdf/346356/7


Download free books at BookBooN.com

Calculus 2c-8

 

8  

0.5

1

1.5

2

–1

–0.5

0.5

1

y

–1

–0.5

0.5
1

x

Figure 2: The surface of Example 1.1.2 and Example 1.1.3.

hence∫
F

√
1 + (x + y + 1)2 dS =

∫
E

1 + (x + y + 1)2

1 + x + y
dx dy

=
∫ 1

0

{∫ 1

0

{
1

1 + x + y
+ x + y + 1

}
dy

}
dx =

∫ 1

0

[
ln(1 + x + y) +

1
2
(x + y + 1)2

]1
y=0

dx

=
∫ 1

0

{
ln(x + 2) +

1
2

(x + 2)2 − ln(x + 1) − 1
2

(x + 1)2
}

dx

=
[
(x + 2) ln(x + 2) − (x + 1) ln(x + 1) +

1
6

(x + 2)3 − 1
6

(x + 1)3
]1
0

= 3 ln 3 − 2 ln 2 +
1
6
· 33 − 1

6
· 23 − 2 ln 2 − 1

6
· 23 +

1
6

= 3 ln 3 − 4 ln 2 +
1
6
{27 − 8 − 8 + 1} = 3 ln 3 − 4 ln 2 + 2 = ln

27
16

+ 2.

2) We get from g(x, y) = 2 − x2 − y2 that


g = (−2x,−2y) = −2(x, y),

hence√
1 + ‖ 
 g‖2 =

√
1 + 4(x2 + y2).

The method here is that we first transform from the surface F to the domain of integration E in

 Surface integral
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rectangular coordinates. Then we continue by transforming the integral into polar coordinates,∫
F

√
x2 + y2 dS =

∫
E

√
x2 + y2 ·

√
1 + 4(x2 + y2) dx dy = 2π

∫ √
2

0

�2
√

1 + 4�2 d�

= 2π

∫ Arsinh(2
√

2)

0

1
8

sinh2 t · cosh2 tdt =
π

16

∫ Arsinh(2
√

2)

0

sinh2(2t) dt

=
π

32

∫ Arsinh(2
√

2)

0

{cosh(4t) − 1} dt =
π

32

[
1
4

sinh(4t) − t

]Arsinh(2
√

2)

0

=
π

32

[
1
2

sinh(2t) cosh(2t)
]Arsinh(2

√
2)

0

− π

32
ln
(

2
√

2 +
√

1 + (2
√

2)2
)

=
π

32
[
sinh t · cosh t(1 + 2 sinh2 t)

]Arsinh(2
√

2)

0
− π

32
ln(3 + 2

√
2)

=
π

32
· 2

√
2 ·
√

1 + (2
√

2)2 ·
{

1 + 2 · (2
√

2)2
}
− π

32
ln
{

(1 +
√

2)2
}

=
π

32
· 2

√
2 · 3 · (1 + 2 · 8) − π

16
ln(1 +

√
2) =

π

16
(51

√
2 − ln(1 +

√
2)).

3) We shall here integrate over the same surface as in Example 1.1.2. We can therefore reuse
the previous result√

1 + ‖ 
 g‖2 =
√

1 + 4(x2 + y2).

If we put t = 4�2 + t, we get the surface integral∫
F

z dS =
∫

E

(2 − x2 − y2)
√

1 + 4(x2 + y2) dx dy = 2π

∫ √
2

0

(2 − �2)
√

1 + 4�2 · � d�

=
2π

8

∫ 9

1

{
2 − 1

4
(t − 1)

}√
t dt =

π

4

∫ 9

1

{
9
4

t
1
2 − 1

4
t

3
2

}
dt =

π

16

[
9 · 2

3
t

3
2 − 2

5
t

5
2

]9
1

=
π

8

[
3t

3
2 − 1

5
t

5
2

]9
1

=
π

8

{
3 · 27 · 1

5
· 243 − 3 +

1
5

}
=

π

8

(
78 − 242

5

)

=
π

4

{
39 − 121

5

}
=

π

20
(195 − 121) =

π

20
· 74 =

37π

10
.

4) It follows immediately that 
g = (y, x), so the weight function is√
1 + ‖ 
 g‖2 =

√
1 + (x2 + y2).

Then we compute the surface integral,∫
F

x2
√

1 + x2 + y2 dS =
∫

E

x2
√

1 + x2 + y2 ·
√

1 + x2 + y2 dx dy

=
∫

E

x2(1 + x2 + y2) dx dy =
∫ 2π

0

{∫ 1

0

�2 cos2 ϕ · (1 + �2)� d�

}
dϕ

=
∫ 2π

0

cos2 ϕ dϕ · 1
2

∫ 1

0

t(1 + t) dt = π · 1
2

[
1
2

t2 +
1
3

t3
]1
0

=
5π

12
.

 Surface integral
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Figure 3: The surface of Example 1.1.4.

5) Here 
g =
2
a

(x,−y), hence the weight is

√
1 + ‖ 
 g‖2 =

√
1 +

4
a2

(x2 + y2) =
1
a

√
a2 + 4(x2 + y2).

 Surface integral
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Figure 4: The surface of Example 1.1.5, Example 1.1.6 and Example 1.1.7.

Then we get the surface integral,∫
F

(a + z) dS =
∫

E

(
a +

x2 − y2

a

)
1
a

√
a2 + 4(x2 + y2) dx dy

=
1
a2

∫
E

(a2 + x2 − y2)
√

a2 + 4(x2 + y2) dx dy

=
1
a2

∫ 2π

0

{∫ √
2a

0

(a2 + �2[cos2 ϕ − sin2 ϕ])
√

a2 + 4�2 � d�

}
dϕ

= 2π

∫ √
2a

0

√
a2 + 4�2 · � d� +

1
a2

∫ 2π

0

cos 2ϕ dϕ

∫ √
2a

0

�2
√

a2 + 4�2 � d�

=
2π

8

∫ √
2a

�=0

(a2 + 4�2)
1
2 d(a2 + 4�2) + 0 =

π

4
· 2
3

[
(a2 + 4�2)

3
2

]√2a

�=0

=
π

6

{
(a2 + 4 · 2a2)

3
2 − a3

}
=

13π

3
a3.

6) The surface is the same as in Example 1.1.5. Therefore, we get the weight function

√
1 + ‖ 
 g‖2 =

1
a

√
a2 + 4(x2 + y2),

and the surface integral is∫
F

1√
a2 + 4x2 + 4y2

dS =
∫

E

1
a

dx dy =
1
a

area(E) =
1
a
· π · 2a2 = 2πa.

7) The surface is the same as in Example 1.1.5, so the weight function is

√
1 + ‖ 
 g‖2 =

1
a

√
a2 + 4(x2 + y2),

 Surface integral
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Figure 5: The surface of Example 1.1.10.

and the surface integral becomes∫
F

√
a2 + 4x2 + 4y2 dS =

∫
E

1
a

(a2 + 4(x2 + y2)) dx dy

=
2π

a

∫ √
2a

0

(a2 + 4�2)� d� =
2π

a

[
1
2

a2�2 + �4

]√2a

�=0

=
2π

a

{
1
2

a2 · 2a2 + 4a4

}
=

2π

a
· 5a4 = 10πa3.

8) Here


g =
(
− 2xy

(x2 + y2)2
,

x2 − y2

(x2 + y2)2

)
=

1
(x2 + y2)2

(−2xy, x2 − y2),

hence

‖ 
 g‖2 =
1

(x2 + y2)4
(
4x2y2 + (x2 − y2)2

)
=

1
(x2 + y2)2

.

The surface integral is∫
F

dS =
∫

E

1
x2 + y2

√
1 + (x2 + y2)2 dx dy = 2π

∫ √
2

0

√
1 + �4

�2
� d�

=
2π

4

∫ √
2

1

√
1 + �4

�4
· 4�3 d� =

π

2

∫ 4

1

1 + t

t
dt =

π

2

∫ √
5

√
2

u · 2u

u2 − 1
du

= π

∫ √
5

√
2

{
1 +

1
2

1
u − 1

− 1
2

1
u + 1

}
du = π

[
u +

1
2

ln
u − 1
u + 1

]√5

√
2

= π

{√
5 −

√
2 +

1
2

ln

(√
5 − 1√
5 + 1

·
√

2 + 1√
2 − 1

)}

= π

{√
5 −

√
2 + ln

(
(
√

5 − 1)(
√

2 + 1)
2

)}

= π{
√

5 −
√

2 + ln(
√

5 − 1) + ln(
√

2 + 1) − ln 2.

 Surface integral
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Figure 6: The surface of Example 1.1.11 for a = 1.

9) It follows from g(x, y) =
√

2a2 − x2 − y2 that


g =
1√

2a2 − x2 − y2
(−x − y),

 Surface integral
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hence

√
1 + ‖ 
 g‖2 =

√
1 +

x2 + y2

2a2 − x2 − y2
=

√
2 · a√

2a2 − x2 − y2
.

If we use polar coordinates in the parameter domain, we get∫
F

z3 dS =
∫

E

(√
2a2 − x2 − y2

)3
·

√
2 · a√

2a2 − x2 − y2
dx dy

=
√

2 a

∫
E

(2a2 − x2 − y2) dx dy =
√

2 a

∫ π
4

−π
4

{∫ a cos 2ϕ

0

(2a2 − �2)� d�

}
dϕ

=
√

2 a

∫ π
4

−π
4

[
a2�2 − 1

4
�4

]a cos 2ϕ

0

dϕ =
√

2 a5

∫ π
4

−π
4

(
cos2 2ϕ − 1

4
cos4 2ϕ

)
dϕ

= 2
√

2 a5

∫ π
4

0

{
1
2

+
1
2

cos 4ϕ − 1
4

(
1 + cos 4ϕ

2

)2
}

dϕ

= 2
√

2 a5

[
1
2

ϕ +
1
8

sin 4ϕ

]π
4

0

− 2
√

2
16

a5

∫ π
4

0

(
1 + 2 cos 4ϕ + cos2 4ϕ

)
dϕ

=
√

2π

4
a5 − 2

√
2

16
· π

4
a5 − 2

√
2

16
· 1
2

a5 · π

4
=

√
2π a5

64
(16 − 2 − 1)

=
13
√

2
64

π a5.

Example 1.2 Compute in each of the following cases the given surface integral over a cylinder surface
C, which is given by the plane curve L in the (X,Y )-plane, and the interval, in which z lies, when
(x, y) is a point of the curve. Notice that L can either be given by an equation in rectangular or in
polar coordinates, or by a parametric description.

1) The surface integral
∫
C(y2z + x2z + y) dS, where the curve L is given by x2 + y2 = 2x, and where

z ∈
[
0,
√

x2 + y2
]
.

2) The surface integral
∫
C z2 dS, where the curve L is given by x2 + y2 = 4, and where z ∈ [−2, x].

3) The surface integral
∫
C(z2 +x2) dS, where the curve L is given by x2 +y2 = 1, and where z ∈ [0, 2].

4) The surface integral
∫
C z dS, where the curve L is given by y = x2 for x ∈ [0, 1], and where

z ∈ [0, x].

5) The surface integral
∫
C z dS, where the curve L is given by r(t) = (a cos3 t, a sin3 t) for t ∈

[
0,

π

2

]
,

and where z ∈ [0, y].

6) The surface integral
∫
C

1
x

dS, where the curve L is given by � = eϕ for ϕ ∈ [0, 1], and where

z ∈ [0, x].

7) The surface integral
∫
C

z

x2
dS, where the curve L is given by � = a cos2

ϕ

2
for ϕ ∈

[
0,

π

2

]
, and

where z ∈ [0, xy].

 Surface integral
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Figure 7: The curve L of Example 1.2.1.

8) The surface integral
∫
C xz dS, where the curve L is given by x2 + y2 = ax, and where z ∈[

0,
√

a2 − x2 − y2
]
.

9) The surface integral
∫
C dS, where the curve L is given by y = ln sinx for x ∈

[π
3

,
π

2

]
, and where

z ∈
[
0,

cos2 x

sin x

]
.

10) The surface integral
∫
C cosh

z

a
dS, where the curve L is given by y = a cosh

x

a
for x ∈ [0, a], and

where z ∈ 0, x].

11) The surface integral
∫
C z2 dS, where the curve L is given by y = x3 for x ∈ [0, 1], and where

z ∈ [0, x].

A Surface integral over a cylinder surface.

D Reduce to a line integral by first integrating in the direction of the Z-axis. Find the line element
and compute the line integral.

I 1) The curve is the circle of centrum (1, 0) and radius 1, thus in polar coordinates

�(ϕ) = 2 cos ϕ, ϕ ∈
[
−π

2
,
π

2

]
,

and the line element is

ds =

√
�2 +

(
d�

dϕ

)2

dϕ =
√

4 cos2 ϕ + 4 sin2 ϕ dϕ = 2 dϕ.

Hence∫
C
(y2z + x2z + y) dS =

∫ π
2

−π
2

{∫ �(ϕ)

0

{z�(ϕ) sin ϕ} dz

}
2 dϕ

=
∫ π

2

−π
2

[
1
2

z2�(ϕ)2 + �(ϕ)z sinϕ

]2 cos ϕ

z=0

· 2 dϕ =
∫ π

2

−π
2

{
16 cos4 ϕ + 8 cos2 ϕ · sinϕ

}
dϕ

=
∫ π

2

−π
2

4(1 + cos 2ϕ)2dϕ + 0 = 8
∫ π

2

0

(
1 + 2 cos 2ϕ +

1
2

+
1
2

cos 4ϕ

)
dϕ = 8 · 3

2
· π

2
= 6π.

 Surface integral
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Figure 8: The curve L of Example 1.2.2.
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Figure 9: The curve L of Example 1.2.3.

2) The curve is the circle of centrum (0, 0) and radius 2. It is described in polar coordinates by

� = 2, ϕ ∈ [0, 2π],

thus the line element is

ds =

√
�2 +

(
d�

dϕ

)2

dϕ = 2 dϕ.

Hence∫
C

z2 dS =
∫ 2π

0

{∫ 2 cos ϕ

−2

z2 dz

}
2 dϕ =

2
3

∫ 2π

0

{
8 cos3 ϕ − (−2)3

}
dϕ

=
16
3

∫ 2π

0

{
cos3 ϕ + 1

}
dϕ =

32π

3
+ 0 =

32π

3
.

3) The curve is the unit circle given in polar coordinates by

� = 1, ϕ ∈ [0, 2π].

 Surface integral
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Figure 10: The curve L of Example 1.2.4.

Thus ds = dϕ, and∫
C
(z2 + x2) dS =

∫ 2π

0

{∫ 2

0

(z2 + cos2 ϕ) dz

}
dϕ

=
8
3
· 2π + 2

∫ 2π

0

cos2 ϕ dϕ =
8
3
· 2π + 2π =

22π

3
.

4) The curve is an arc of a parabola. It follows by putting y = g(x) = x2 that the line element is

ds =
√

1 + g′(x)2 dx =
√

1 + 4x2 dx,

thus∫
C

z dS =
∫ 1

0

{∫ x

0

z dz

}√
1 + 4x2 dx =

1
2

∫ 1

0

x2
√

1 + 4x2 dx.

Then we get by the substitution x =
1
2

sinh t, t = Arsinh(2t) that

∫
C

z dS =
1
2

∫ Arsinh 2

0

1
4

sinh2 t · cosh t · 1
2

cosh t dt =
1
16

∫ Arsinh 2

0

(
1
2

sinh 2t

)2

dt

=
1
64

∫ Arsinh 2

0

1
2
(cosh 4t − 1) dt =

1
512

[sinh 4t]Arsinh 2
0 − 1

128
Arsinh 2

=
1

512

[
4 sinh t ·

√
1 + sinh2 t · (1 + 2 sinh2 t)

]Arsinh 2

0
− 1

128
ln(2 +

√
5)

=
1

128
· 2

√
5 · (1 + 2 · 4) − 1

128
ln(2 +

√
5) =

9
√

5
64

− 1
128

ln(2 +
√

5).

5) We have in the given interval, cos t · sin t ≥ 0, so we do not need the absolute sign in the latter
equality,

‖r′(t)‖ = a

√
(−3 cos2 t sin t)2 + (3 sin2 t cos t)2

= 3a

√
cos2t {cos2 t sin2 t} + sin2 t {cos2 t sin2 t} = 3a cos t sin t,

 Surface integral
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Figure 11: The curve L of Example 1.2.5 for a = 1.
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Figure 12: The curve L of Example 1.2.6.

thus the line element becomes

ds = 3a cos t sin t dt, t ∈
[
0,

π

2

]
.

Then∫
C

z dS =
∫ π

2

0

{∫ a sin3 t

0

z dz

}
3a cos t sin t dt =

3a2

2

∫ π
2

0

sin7 t cos t dt

=
3
16

a3
[
sin8 t

]π
2

0
=

3a2

16
.

6) The line element along the curve is

ds =

√
�2 +

(
d�

dϕ

)2

dϕ =
√

2 eϕ dϕ, ϕ ∈ [0, 1],

and we get the surface integral∫
C

1
x

dS =
∫ 1

0

1
x
· x

√
2 eϕ dϕ =

√
2(e − 1).

 Surface integral
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7) The line element is

ds =

√
�2 +

(
d�

dϕ

)2

dϕ =

√
a2 cos4

ϕ

2
+ a2

(
−2 cos

ϕ

2
· sin ϕ

2
· 1
2

)2

dϕ

= a cos
ϕ

2
dϕ for ϕ ∈

[
0,

π

2

]
,

 Surface integral
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Figure 13: The curve L of Example 1.2.7 for a = 1.

hence∫
C

z

x2
dS =

∫ π
2

0

1
x2

{∫ xy

0

z dz

}
a cos

ϕ

2
dϕ =

1
2

∫ π
2

0

(xy)2

x2
· a cos

ϕ

2
dϕ

=
a

2

∫ π
2

0

�(ϕ)2 sin2 ϕ · cos
ϕ

2
dϕ =

a

2

∫ π
2

0

a2 cos4
ϕ

2
· 4 sin2 ϕ

2
· cos2

ϕ

2
· cos

ϕ

2
dϕ

= 2a3

∫ π
2

0

cos6
ϕ

2
· sin2 ϕ

2
· cos

ϕ

2
dϕ

= 4a3

∫ π
2

0

{
1 − sin2 ϕ

2

}3

· sin2 ϕ

2
·
(

1
2

cos
ϕ

2

)
dϕ

= 4a3

∫ π
2

ϕ=0

{
sin2 ϕ

2
− 3 sin4 ϕ

2
+ 3 sin6 ϕ

2
− sin8 ϕ

2

}
d
(
sin

ϕ

2

)

= 4a3

[
1
3

t3 − 3
5

t5 +
3
7

t7 − 1
9

t9
] 1√

2

0

=
4a3

2
√

2

{
1
3
− 3

5
· 1
2

+
3
7
· 1
4
− 1

9
· 1
8

}

=
a3
√

2
2520

(840 − 756 + 270 − 35) =
319

√
2

2520
a3.

8) The curve is in polar coordinates given by

� = a cos ϕ, ϕ ∈
[
−π

2
,
π

2

]
,

thus

ds =

√
�2 +

(
d�

dϕ

)2

dϕ = a dϕ,
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Figure 14: The curve L of Example 1.2.8 for a = 1.
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Figure 15: The curve L of Example 1.2.9.

and∫
C

xz dS =
∫ π

2

−π
2

{∫ √
a2−a2 cos2 ϕ

0

a cos2 ϕ · z dz

}
a dϕ

=
a2

2

∫ π
2

−π
2

cos2 ϕ (1 − cos2 ϕ)a2dϕ =
a4

2

∫ π
2

−π
2

(
1
2

sin 2ϕ

)2

dϕ

=
a4

2
· 1
4
· 2
∫ π

2

0

sin2 2ϕ dϕ =
a4

8

∫ π
2

0

(1 − cos 4ϕ) dϕ =
a4π

16
.

9) We derive from y = g(x) = ln sinx, x ∈
[π
3

,
π

2

]
that the line element is

ds =
√

1 + g′(x)2 dx =

√
1 +
(cos x

sin x

)2
dx =

1
sinx

dx,

 Surface integral
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and thus∫
C

dS =
∫ π

2

π
3

cos2 x

sin x
· 1
sin x

dx =
∫ π

2

π
3

(
1

sin2 x
− 1
)

dx

= [− cot x − x]
π
2
π
3

= cot
π

3
− π

6
=

1√
3
− π

6
.

 Surface integral
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Figure 16: The curve L of Example 1.2.10 for a = 1.
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Figure 17: The curve L of Example 1.2.11.

10) When the curve is given by y = g(x) = a cosh
x

a
, we obtain the line element

ds =
√

1 + g′(x)2 dx =
√

1 + sinh2 x

a
dx = cosh

x

a
dx,

so ∫
C

cosh
z

a
dS =

∫ a

0

{∫ x

0

cosh
z

a
dz

}
· cosh

x

a
dx

= a

∫ a

0

sinh
x

a
· cosh

x

a
dx =

a2

2
· sinh2 1

=
a2

2

(
e − e−1

2

)2

=
a2

8e2

(
e2 − 1

)2
=

a2

8e2

(
e4 − 2e2 + 1

)
.

11) For the curve given by y = g(x) = x3, the line element is

ds =
√

1 + g′(x)2 dx =
√

1 + 9x4 dx,

 Surface integral
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hence∫
C

z2 dS =
∫ 1

0

{∫ x

0

z2 dz

}√
1 + 9x4 dx =

1
3

∫ 1

0

√
1 + 9x4 · x3 dx

=
1
3
· 1
4
· 1
9

∫ 1

0

√
1 + 9x4 · 9 d

(
x4
)

=
1

108
· 2
3

[(√
1 + 9x4

)3]1
0

=
1

162
(10

√
10 − 1).

 Surface integral
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Figure 18: The meridian curve M of Example 1.3.1 for a = 1.

Example 1.3 Compute in each of the following cases the given surface integral over a surface of
revolution O which is given by a meridian curve M in the meridian half plane, in which � and z are
rectangular coordinates.

1) The surface integral
∫
O(x2 + y2) dS, where the meridian curve M is given by z =

�2

2a
for � ≤ a.

2) The surface integral
∫
O(x2 + y2) dS, where the meridian curve M is given by z =

h�

a
for � ≤ a.

3) The surface integral
∫
O dfracez� dS, where the meridian curve M is given by z = ln ∈ � for

� ∈
[
π

3
,
2π

3

]
.

4) The surface integral
∫
O x2 dS, where the meridian curve M is given by z2 + �2 = az.

5) The surface integral
∫
O |x|e−x dS, where the meridian curve M is given by z = − ln cos � for

� ∈
[
0,

π

3

]
.

6) The surface integral
∫
O

y2

z
dS, where the meridian curve M is given by z = a cosh

�

a
for � ∈ [0, a].

A Surface integral over a surface of revolution.

D Use either semi polar or spherical coordinates and the area element � dϕds, where ds is the curve
element, i.e. if e.g. z = g(�), then

ds =
√

1 + g′(�)2 d�,

and similarly.

 Surface integral
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Figure 19: The meridian curve M of Example 1.3.2 for a = 1 and h = 1.

I 1) Here ds =

√
1 +
(�

a

)2
d�, hence

∫
O

(x2 + y2) dS =
∫ 2π

0

{∫ a

0

�2 · �
√

1 +
(�

a

)2
d�

}
dϕ = 2π · a4

2

∫ 1

0

t
√

1 + t dt

= πa4

∫ 1

0

{
(1 + t)

3
2 − (1 + t)

1
2

}
dt = πa4

[
2
5

(1 + t)
5
2 − 2

3
(1 + t)

3
2

]1
0

= πa4

{
2
5

(
2

5
2 − 1

)
− 2

3

(
2

3
2 − 1

)}
=

πa4

15
{6(4

√
2 − 1) − 10(2

√
2 − 1)}

=
πa4

15
{24

√
2 − 6 − 20

√
2 + 10} =

πa4

15
{4
√

2 + 4} =
4πa4

15
(
√

2 + 1).

2) Here

ds =

√
1 +

h2

a2
d� =

1
a

√
a2 + h2 d�,

hence∫
O

(x2 + y2) dS =
∫ 2π

0

{∫ a

0

�2 · � · 1
a

√
a2 + h2 d�

}
dϕ

= 2π · 1
a

√
a2 + h2 · 1

4
a4 =

π

2
a3
√

a2 + h2.

3) From z = ln sin � follows that
dz

d�
=

cos �

sin �
, hence

√
1 +
(

dz

d�

)2

=

√
1 +

cos2 �

sin2 �
=

1
| sin �| =

1
sin �

for � ∈
[
π

3
,
2π

3

]
.

The area element is

� dϕds =
�

sin �
d� dϕ = dS,

 Surface integral



Download free books at BookBooN.com

Calculus 2c-8

 

27  

–0.12

–0.08

–0.04
0

1.2 1.4 1.6 1.8 2

t

Figure 20: The meridian curve M of Example 1.3.3.
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Figure 21: The meridian curve M of Example 1.3.4 and Example 1.3.5 for a = 1.

hence by insertion

∫
O

ez

�
dS =

∫ 2π

0

{∫ 2π
3

π
3

sin �

�
· �

sin �
d�

}
dϕ = 2π

(
2π

3
− π

3

)
=

2π2

3
.

4) The figure shows that the meridian curve is a half circle of radius
a

2
. Hence, the integral

∫
O dS

is equal to the surface area of the sphere, i.e.∫
O

dS = 4π
(a

2

)2
= πa2

where we have used the result of Example 1.3.6 with a = b.
Alternatively,

� =

√(a

2

)2
−
(
z − a

2

)2
, for z ∈ [0, a],

 Surface integral
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in rectangular coordinates, so

ds =

√√√√√√1 +

(
z − a

2

)2
(a

2

)2
−
(
z − a

2

)2 dz =
a

2
1√(a

2

)2
−
(
z − a

2

)2 dz.

Thus∫
O

dS = 2π

∫ a

0

√(a

2

)2
· a

2
· 1√(a

2

)2
−
(
z − a

2

)2 dz = 2π · a

2
· a = πa2.

Alternatively we have r = a cos θ, θ ∈
[
0,

π

2

]
, in spherical coordinates, and � = r sin θ =

a sin θ cos θ, and

ds =

√
r2 +

(
dr

dθ

)2

dθ = a dθ,

and we get

∫
O

dS = 2π

∫ π
2

0

a sin θ cos θ · a dθ = a2π
[
sin2 θ

]π
2

0
= a2π.

 Surface integral
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Figure 22: The meridian curve M of Example 1.3.6.

5) From x = � cos ϕ in semi polar coordinates we get from Example 1.3.4 that∫
O

x3 dS =
∫ 2π

0

{∫ a

0

{
(
a

2
)2 − (z − a

2
)2
}

cos2 ϕ · a

2
·
√

(a
2 )2 − (z − a

2 )2√
(a
2 )2 − (z − a

2 )2
dz

}
dϕ

=
a

2

∫ 2π

0

cos2 ϕdϕ

∫ a

0

(az − z2) dz =
a

2
· π
[
a

2
z2 − 1

3
z3

]a
0

=
a4π

12
.

Alternatively,

x = r sin θ cos ϕ = a cos θ cos ϕ

in spherical coordinates, cf. Example 1.3.4, so accordingly∫
O

dS =
∫ 2π

0

{∫ π
2

0

a2 cos2 θ sin2 θ cos2 ϕ · a sin θ cos θ a dθ

}
dϕ

= a4

∫ 2π

0

cos2 ϕdϕ

∫ π
2

0

sin3 θ · (1 − sin2 θ) cos θ dθ = a4π

[
1
4
− 1

6

]
=

a4π

12
.

6) As

ds =

√
1 +
(

sin �

cos �

)2

d� =
1

cos �
d�, for � ∈

[
0,

π

3

]
,

we get∫
O
|x|e−z dS =

∫ 2π

0

{∫ π
3

0

�| cos ϕ| · cos � · �

cos �
d�

}
dϕ

= 4
∫ π

2

0

cos ϕdϕ ·
∫ π

3

0

�2 d� = 4 · 1
3

(π

3

)3
=

4π3

81
.

7) We get from z = g(�) = a cosh
�

a
that g′(�) = sinh

�

a
and

ds =
√

1 + g′(�)2 d� =
√

1 + sinh2 �

a
d� = cosh

�

a
d�,
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Figure 23: The meridian curve M of Example 1.3.7 for a = 1.

hence∫
O

y2

z
dS =

∫ 2π

0

⎧⎨
⎩
∫ a

0

�2 sin2 ϕ

a cosh
�

a

· � · cosh
�

a
d�

⎫⎬
⎭ dϕ

=
1
a

∫ 2π

0

sin2 ϕdϕ ·
∫ a

0

�3 d� =
1
a
· π · 1

4
a4 =

πa3

4
.

Example 1.4 Calculate in each of the following cases the given surface integral over the surface given
by a parametric description

F =
{
x ∈ R

3 | x = r(u, v), (u, v) ∈ E
}

.

First find the normal vector of the surface N(u, v).

1) The surface integral
∫
F xz2 dS, where the surface F is given by

x = r(u, v) = (u cos v, u sin v, hv), for 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π.

2) The surface integral
∫
F z2 dS, where the surface F is given by

x = r(u, v) = (
√

u cos v,
√

u sin v, ev) for 1 ≤ u ≤ 2,
lnu

2
≤ v ≤ ln(2u)

2
.

3) The surface integral
∫
F (x2 + y2) dS, where the surface F is given by

x = r(u, v) =
(√

u cos v,
√

u sin v, v
3
2

)
for 1 ≤ u ≤ 2, 0 ≤ v ≤ u.

4) The surface integral
∫
F (x3 + 2z − 3xy) dS, where the surface F is given by

x = r(u, v) = (u + v, u2 + v2, u3 + v3) for u + v ≤ 0, u2 + v2 ≤ 5.

 Surface integral
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A Surface integrals, where the surface is given by a parametric description.

D First find the normal vector N(u, v). Then compute the weight function ‖N(u, v)‖ as a function
of the parameters (u, v) ∈ E.

I 1) The normal vector is

N(u, v) =
∂r
∂u

× ∂r
∂v

=

∣∣∣∣∣∣
e1 e2 e3

cos v sin v 0
−u sin v u cos v h

∣∣∣∣∣∣ = (h sin v,−h cos v, u),

and we find accordingly the weight function

‖N(u, v)‖ =
√

h2 + u2.

Then we get the following reduction of the surface integral,∫
F

xz2 dS =
∫ 1

0

{∫ 2π

0

u cos v · h2v2
√

h2 + u2 dv

}
du = h2

∫ 1

0

u
√

h2 + u2 du ·
∫ 1

0

v2 cos v dv

= h2

[
1
2
· 2
3
(h2 + u2)

3
2

]1
0

· [v2 sin v+2v cos v−2 sin v
]2π

0

=
1
3

h2
{(

h2 + 1
) 3

2 − h3
}
· 4π =

4π

3
h2
{(

h2 + 1
)√

h2 + 1 − h3
}

.

2) The normal vector is

N(u, v) =
∂r
∂u

× ∂r
∂v

=

∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

1
2

1√
u

cos v
1
2

1√
u

sin v 0

−√
u sin v

√
u cos v ev

∣∣∣∣∣∣∣∣∣∣∣
=
(

1
2

ev

√
u

sin v,−1
2

ev

√
u

cos v,
1
2

)
,

so the weight function becomes

‖N(u, v)‖ =

√
1
4

e2v

u
+

1
4

=
1

2
√

u

√
e2v + u.

Then we have the following reduction of the surface integral∫
F

z2 dS =
∫ 2

1

{∫ 1
2 ln(2u)

1
2 ln u

e2v · 1
2
· 1√

u
·
√

e2v + u dv

}
du

=
1
2
· 1
2

∫ 2

1

{∫ 1
2 ln(2u)

v= 1
2 ln u

1√
u

√
e2v + u d

(
e2v
)}

du

=
1
4

∫ 2

1

1√
u
· 2
3

[
(t + u)

3
2

]t=2u

t=u
du =

1
6

∫ 2

1

1√
u

{
(3u)

3
2 − (2u)

3
2

}
du

=
1
6

(3
√

3 − 2
√

2)
∫ 2

1

u du =
1
12

(3
√

3 − 2
√

2
[
u2
]2
1

=
1
4

(3
√

3 − 2
√

2).
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3) The normal vector is

N(u, v) =
∂r
∂u

× ∂r
∂v

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

1
2

1√
u

cos v
1
2

1√
u

sin v 0

−√
u sin v

√
u cos v

3
2
√

v

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
(

3
4

√
v

u
sin v,−3

4

√
v

u
cos v,

1
2

)
,

and the weight function is

‖N(u, v)‖ =

√
9
16

v

u
+

1
4

=
3
4

√
v

u
+

4
9
.
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Finally, we get the following reduction of the surface integral∫
F

(x2 + y2) dS =
∫ 2

1

{∫ u

0

(
u cos2 +u sin2 v

) · 3
4

√
v

u
+

4
9

dv

}
du

=
3
4

∫ 2

1

{∫ u

0

u

√
v

u
+

4
9

dv

}
du =

3
4

∫ 2

1

{∫ u

0

√
v +

4
9

u · √u dv

}
du

=
3
4
· 2
3

∫ 2

1

√
u

[(
v +

4
9

u

) 3
2
]u

0

du =
1
2

∫ 2

1

√
u

{(
13
9

u

) 3
2

−
(

4
9

u

) 3
2
}

du

=
1
2
· 1
27

(13
√

13 − 8)
∫ 2

1

u2 du =
7

162
(13

√
13 − 8).

4) The normal vector is

N(u, v) =
∂r
∂u

× ∂r
∂v

=

∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

1 2u 3u2

1 2v 3v2

∣∣∣∣∣∣∣∣∣∣
=
(
6uv2 − 6u2v, 3u2 − 3v2, 2v − 2u

)

= (6uv(vu), 3(u + v)(u − v), 2(v − u)) = (v − u)(6uv,−3(u + v), 2).

Hence the weight function

‖N(u, v)‖ = |v − u|
√

36u2v2 + 9(u2 + 2uv + v2) + 4.

This expression looks very impossible, so we can only hope for that some factor of the integrand
cancels the unfortunate square root.
The integrand is given in the parameters of the surface by

x3 + 2z − 3xy = (u + v)3 + 2(u3 + v3) − 3(u + v)(u2 + v2)
= u3 + 3u2v + 3uv2 + v3 + 2u3 + 2v3 − 3u3 − 3u2v − 3uv2 − 3v3

= 0.

Luckily, the surface of integration F is a zero surface of the integrand, so there is nothing to
worry about,∫

F
(x3 + 2z − 3xy) dS = 0.
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Example 1.5 Let F be the sphere of centrum (0, 0, 0) and radius a, and let

f(x, y, z) = α(x2 + y2 − 2z2) + βxy,

where α and β are constants. Compute the surface integrals

Q =
∫
F

f(x, y, z) dS and p =
∫
F

(x, y, z)f(x, y, z) dS.

A Surface integral.

D Exploit the symmetry of the sphere, since this is far easier than just to insert into some formula.
Notice that there are several possibilities of insertion into standard formulæ, though none of them
looks promising.

I It follows by the symmetry that∫
F

x2 dS =
∫
F

y2 dS =
∫
F

z2 dS,

and that∫
F

xy dS = 0.

It follows immediately that

Q = α

(∫
F

x2 dS +
∫
F

y2 dS − 2
∫
F

z2 dS

)
+ β

∫
F

xy dS = 0.

A similar symmetric consideration shows that if g(x, y, z) is a homogeneous polynomial of odd
degree, then∫

F
g(x, y, z) dS = 0.

Split F into the eight surfaces occurring by the intersections by the three coordinate planes. By
assuming that g(x, y, z) is odd, it follows by the symmetry of the sphere that the surfaces can be
paired in such a way that the sum of the surface integrals over each pair is zero. (The details are
left to the reader).

Since x f(x, y, z), y f(x, y, z) and z f(x, y, z) all are homogeneous of degree 3, we conclude that

p = 0.

Remark. We shall for obvious reasons skip the traditional variants which give a lot of tedious
computations. The reason for including this example is of course to demonstrate that one in some
cases may benefit from the symmetry. ♦
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Example 1.6 Let F be the sphere given by r = a and let R denote the distance from the point (x, y, z)
on the sphere to the point (0, 0, w) on the Z-axis. Find

U(w) =
∫
F

1
R

dS.

One may assume that w ≥ 0. The cases w = a and w = 0, however, must be treated separately.

A Surface integral.

D We may for symmetric reasons assume that w ≥ 0. We shall first check where
1
R

is harmonic. To

this end we use the mean value theorem, whenever possible. Then proceed by calculating U(w)
directly. We get some special cases, when either w = a or w = 0. We have an improper integral in
the former case and lots of symmetry in the latter one.

I Clearly,

1
R

=
1√

x2 + y2 + (z − w)2
=
{
x2 + y2 + (z − w)2

}− 1
2 .

It follows immediately for w = 0 that

U(0) =
∫
F

1
a

dS =
1
a

area(F) = 4πa.

Remark. It can be mentioned aside that we get by using a so-called Riesz transformation that

U(w) = U(0) = 4πa for − a < w < a.

However, Riesz-transformations cannot be assumed for most readers, so we shall here give a straight
proof instead. ♦

It follows from the expression of
1
R

that U(−w) = U(w), and we have again explained why we can
choose w ≥ 0.

First attempt. We first check if
1
R

is harmonic for (x, y, z) �= (0, 0, w). We find

∂

∂x

(
1
R

)
= −x

(
1
R

)3

,

and

∂2

∂x2

(
1
R

)
= −
(

1
R

)3

− 3x

(
1
R

)
·
{
−x

(
1
R

)3
}

= −
(

1
R

)3

+ 3x2

(
1
R

)5

.

Then by the symmetry,

∂2

∂x2

(
1
R

)
+

∂2

∂y2

(
1
R

)
+

∂2

∂z2

(
1
R

)
= −3

(
1
R

)3

+ 3
(

1
R

)5 {
x2 + y2 + (z − w)2

}

= −3
(

1
R

)3

+ 3
(

1
R

)5

· R2 = 0,
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and the function is harmonic for (x, y, z) �= (0, 0, w).

It follows when w > a from the mean value theorem that

U(w) =
∫
F

1
R

dS =
1

R(0, 0, 0)
area(F) =

4πa2

w
, w > a,

thus in general

U(w) =
4πa2

|w| for |w| > a.

Notice that when |w| < a, we cannot use the argument above because of the singularity at

(0, 0, w) for
1
R

which then lies inside K.

Second attempt. Split the surface F into an upper surface F1 and a lower surface F2. Then

z =
√

a2 − x2 − y2 p̊a F1, z = −
√

a2 − x2 − y2 p̊a F2.

The surface element is in rectangular coordinates given by

dS =
a√

a2 − x2 − y2
dxdy, x2 + y2 < a2,
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and we have

R =
√

x2 + y2 + (z − w)2 =
√

a2 − (a2 − x2 − y2) + (±
√

a2 − x2 − y2 − w)2,

where the sign + is used on F1, and the sign − on F2.

Let S be the disc �2 = x2 + y2 < a2. Then

U(w) =
∫
F

1
R

dS =
∫
F1

1
R

dS +
∫
F2

1
R

dS

=
∫ 2π

0

⎧⎪⎪⎨
⎪⎪⎩
∫ a

0

1√
a2−(a2−�2)+(

√
a2−�−w)2 · a�√

a2−�2

d�

⎫⎪⎪⎬
⎪⎪⎭ dϕ

+
∫ 2π

0

⎧⎨
⎩
∫ a

0

1√
a2−(a2−�2)+(

√
a2−�+w)2

· a�√
a2−�2

d�

⎫⎬
⎭ dϕ

= 2πa

∫ a

0

⎧⎪⎪⎨
⎪⎪⎩

1√
a2 − t2 + (t − w)2 +

1√
a2 − t2 + (t + w)2

⎫⎪⎪⎬
⎪⎪⎭ dt

= 2πa

∫ a

0

{
1√

a2 + w2 − 2tw
+

1√
a2 + w2 + 2tw

}
dt

= 2πa

[√
a2 + w2 − 2tw

−w
+

√
a2 + w2 + 2tw

w

]a

0

=
2πa

w

{
−
√

a2 + w2 − 2aw +
√

a2 + w2 + 2aw +
√

a2 −
√

a2
}

=
2πa

w
{|a + w| − |a − w|}.

For w = 0 we get instead (cf. the above)

U(0) = 2πa

∫ a

0

{
1√
a2

+
1√
a2

}
dt = 2πa · 2

a
· a = 4πa,

in agreement with the previous result.

If 0 < w < a, then

U(w) =
2πa

w
(a + w − a + w) = 4πa,

cf. the previous remark about the Riesz transformation.
When w = a, then U(a) = 4πa.
When w > a, then

U(w) =
2πa

w
(a + w + a − w) =

4πa2

w
,
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cf. the result on harmonic functions.

Summarizing,

U(w) =

⎧⎪⎪⎨
⎪⎪⎩

4πa for |w| ≤ a,

4πa2

|w| for |w| > a.

Example 1.7 A surface of revolution F is given in semi polar coordinates (�, ϕ, z) by

z = �2, � ∈ [0, 2], ϕ ∈ [0, 2π].

Sketch the meridian curve M, and compute the surface integral∫
F

1√
1 + 4z

dS.

A Surface integral.

D Follow the guidelines.

0

1

2

3

4

y

0.5 1 1.5 2

x

Figure 24: The meridian curve M.

I The surface element is dS = P dϕ ds, where P = �(z) =
√

z and

ds =

√
1 +
(

d�

dz

)2

dz =

√
1 +
(

1
2
· 1√

z

)2

dz,

thus

∫
F

1√
1 + 4z

dS = 2π

∫ 4

0

1
1 + 4z

· √z ·
√

1 +
1
4z

dz

= 2π

∫ 4

0

√
z

1 + 4z
·
√

1 + 4z

4z
dz =

2π

2

∫ 4

0

dz = 4π.
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Example 1.8 A surface of revolution F is given in semi polar coordinates (�, ϕ, z) by

z = �3, � ∈
[
0,

1
2

]
, ϕ ∈ [0, 2π].

Sketch the meridian curve M, and find the line element ds on this curve. Then compute the surface
integral∫

F

�2

1 + 9z�
dS.

A Surface integral.

D Follow the guidelines.

–0.1

–0.05

0

0.05

0.1

0.15

0.2

y

0.1 0.2 0.3 0.4 0.5 0.6

x

Figure 25: The meridian curve M.

I It follows from
dz

d�
= 3�2 that the line element is

ds =

√
1 +
(

dz

d�

)2

d� =
√

1 + 9�4 d�, � ∈
[
0,

1
2

]
,

and accordingly the surface element

dS = �
√

1 + 9�4 d� dϕ, � ∈
[
0,

1
2

]
, ϕ ∈ [0, 2π].

We have z = �3 on F , so by insertion into the surface integralm

∫
F

�2

1 + 9z�
dS = 2π

∫ 1
2

0

�2

1 + 9�4
· �
√

1 + 9�4 d� = 2π

∫ 1
2

0

�3√
1 + 9�4

d� =
2π

4 · 9
∫ 25

16

1

du√
u

=
2π

36
[2
√

u](5/4)2

1 =
4π

36

(
5
4
− 1
)

=
π

36
.
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Example 1.9 The surface F is given by

z = g(x, y) =
y2

x
+

3
4

x, (x, y) ∈ E,

where

E = {(x, y) ∈ R
2 | 1 ≤ x ≤ 2, 0 ≤ y ≤ x2}.

Prove that√
1 +
(

∂g

∂x

)2

+
(

∂g

∂y

)2

=
(y

x

)2
+

5
4
,

and then compute the surface integral
∫
F x dS.
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A Surface integral.

D Follow the guidelines.

2

4

6

8

0

1

2

3

4

t

1

1.2

1.4

1.6

1.8

2

s

Figure 26: The surface F .

I It follows from

∂g

∂x
= −y2

x2
+

3
4
,

∂g

∂y
= 2

y

x

that

1 +
(

∂g

∂x

)2

+
(

∂g

∂y

)2

= 1 +
{
−y2

x2
+

3
4

}2

+ 4 · y2

x2

= 1 +
(y

x

)4
− 3

2

(y

x

)
+

9
16

+ 4
(y

x

)2
=
{(y

x

)2}2

+
5
2

(y

x

)2
+

25
16

=
{(y

x

)2}2

+ 2 ·
(y

x

)
· 5
4

+
(

5
4

)2

=
{(y

x

)2
+

5
4

}2

,

hence√
1 +
(

∂g

∂x

)2

+
(

∂g

∂y

)2

=
(y

x

)2
+

5
4
.

Then by the usual reduction of the surface integral to a plane integral,

∫
F

x dS =
∫

E

x

√
1 +
(

∂g

∂x

)2

+
(

∂g

∂y

)2

dx dy =
∫

E

{(y

x

)2
+

5
4

}
x dx dy

=
∫ 2

1

{∫ x2

0

(
y2

x
+

5
4

x

)
dy

}
dx =

∫ 2

1

[
y3

3x
+

5
4

xy

]x2

y=0

dx

=
∫ 2

1

{
x6

3x
+

5
4

x3

}
dx =

∫ 2

1

{
1
3

x5 +
5
4

x3

}
dx

=
[

1
18

x6 +
5
16

x4

]2
1

=
64
18

+
5
16

· 16 − 1
18

− 5
16

=
63
18

+
75
16

=
7
2

+
75
16

=
131
16

.
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Example 1.10 A plane curve L is given by the parametric description

(x, y) = (cos t,−2 ln sin t), t ∈
[π
6

,
π

2

]
.

1. Show that the line element ds is given by

ds =
2 − sin2 t

sin t
dt.

A cylinder surface C with L as its leading curve is given in the following way:

x = cos t, y = −2 ln sin t, z ∈ [0, sin t], t ∈
[π
6

,
π

2

]
.

2. Compute the surface integral
∫
C xz dS.

A Curve element and surface integral.

D Follow the guidelines; apply the formula of the surface integral over a cylinder surface.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.4 0.6 0.8

Figure 27: The leading curve L.

I 1) From

dx

dt
= − sin t and

dy

dt
= −2

cos t

sin t
,

follows that(
dx

dt

)2

+
(

dy

dt

)2

= sin2 t +
4 cos2 t

sin2 t
=

1
sin2 t

{
(sin2 t)2 − 4 sin2 t + 4

}

=
{

2 − sin2 t

sin t

}2

,

hence

ds =

√(
dx

dt

)2

+
(

dy

dt

)2

dt =
∣∣∣∣2 − sin2 t

sin t

∣∣∣∣ dt =
2 − sin2 t

sin t
dt, t ∈

[π
6

,
π

2

]
.
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0.2

0.4

0.6

0.8

1

0.2
0.4

0.6
0.8

1
1.2

1.4

t

0.2

0.4

0.6

0.8

s

Figure 28: The surface F .

2) Then the surface integral is computed by means of the formula of an integral over a cylinder
surface,∫

C
xz dS =

∫
L

{∫ sin t

0

cos t · z dz

}
ds =

∫
L

cos t ·
[
z2

2

]sin t

0

ds

=
∫ π

2

π
6

cos t · 1
2

sin2 t · 2 − sin2 t

sin t
dt =

1
2

∫ π
2

π
6

{
2 sin t − sin3 t

}
cos t dt

=
1
2

[
sin2 t − 1

4
sin4 t

]π
2

π
6

=
1
2

{
1 − 1

4
− 1

2
+

1
4

(
1
2

)4
}

=
1

128
{64 − 16 − 32 + 1} =

17
128

.

Example 1.11 Let F denote the surface of the parametric description

r(u, v) = ((a + u) cos v, (a + u) sin v, av), (u, v) ∈ E,

where

E = {(u, v) ∈ R
2 | 0 ≤ u ≤ a, 0 ≤ v ≤ 2u},

and where a ∈ R+ is a given constant.
Compute the surface integral∫

F

z2√
a2+x2+y2

dS.

A Surface integral.

D First find the weight function, i.e. the length of the normal vector field.

I It follows from

∂r
∂u

= (cos v, sin v, 0),
∂r
∂v

= (−(a + u) sin v, (a + u) cos v, a),

 Surface integral
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Figure 29: The surface F for a = 1.

that the normal vector is given by

N(u, v) =

∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

cos v sin v 0

−(a + u) sin v (a + u) cos v a

∣∣∣∣∣∣∣∣∣∣
= (a sin v, a cos v, a + u),

 Surface integral
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thus

‖N(u, v)‖ =
√

a2 + (a + u)2.

Then we can compute the surface integral,

∫
F

z2√
a2+x2+y2

dS =
∫

E

a2v2√
a2+(a+u)2

· ‖N(u, v)‖ du dv

= a2

∫ a

0

{∫ 2u

0

v2 dv

}
du = a2

∫ a

0

[
v3

3

]2u

0

du

=
8
3

a2

∫ a

0

u3 du =
2
3

a2 · a4 =
2
3

a6.

Example 1.12 A surface of revolution O is given in semi polar coordinates (�, ϕ, z) by

� ∈ [0, 2a], ϕ ∈ [0, 2π], z =
√

a2 + �2,

where a ∈ R+ is some given constant.

1) Sketch the meridian curve M.

2) Show that the line element ds on M is given by

ds =

√
a2 + 2�2

a2 + �2
d�.

3) Compute the line integral∫
M

z� ds.

4) Compute the surface integral∫
O

1

z2
√

z2 + �2
dS.

A Surface of revolution, line integral and surface integral.

D Standard example.

2) From

dz =
�√

a2 + �2
d�,

follows that

ds =
√

(d�)2 + (dz)2 =

√
1 +

�2

a2 + �2
d� =

√
a2 + 2�2

a2 + �2
d�.

 Surface integral
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Figure 30: The meridian curve M for a = 1.

3) We conclude from 2) that

∫
M

z� ds =
∫ 2a

0

√
a2 + �2 · � ·

√
a2 + 2�2

a2 + �2
d� =

∫ 2a

0

√
a2 + 2�2 · � d�

=
1
4
· 2
3

[(
a2 + 2�2

) 3
2
]2a

�=0
=

1
6

{(
9a2
) 3

2
}

=
1
6

a3
(
33 − 1

)
=

26
6

a3 =
13
3

a3.

 Surface integral
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4) Again we get by first applying the result of 2),

∫
O

1

z2
√

z2 + �2
dS = 2π

∫ 2π

0

1

(a2 + �2)
√

a2 + 2�2
· �
√

a2 + 2�2

a2 + �2
d�

= 2π

∫ 2a

0

(
a2 + �2

)− 3
2 � d� = 2π

[
− 1√

a2 + �2

]2a

�=0

= 2π

(
1
a
− 1√

5
· 1
a

)
=

2π

a

(
1 − 1√

5

)
=

2(5 −√
5)π

5a
.

Example 1.13 A surface of revolution O is given in semi polar coordinates by

� ∈ [a, 2a], ϕ ∈ [0, 2π], z = 2a − �2

a
,

where a ∈ R+ is some given constant.

1) Sketch the meridian curve M, and show that the line element ds on M is given by

ds =
1
a

√
a2 + 4�2 d�.

2) Compute the line integral

∫
M

√
2 − z

a
ds.

3) Compute the surface integral∫
O

1
az + 9�2

dS.

A Line integral and surface integral.

D Apply the standard methods.

I 1) When we use the parametric description

M : (�, z) =
(

�, 2a − �2

a

)
, � ∈ [a, 2a],

the square of the weight function becomes

(
d�

d�

)2

+
(

dz

d�

)2

= 1 +
(
−2�

a

)2

=
1
a2

(
a2 + 4�2

)
,

hence

ds =
1
a

√
a2 + 4�2 d�.

 Surface integral
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Figure 31: The meridian curve M for a = 1.

2) Then by 1) and the substitution t = 4�2,∫
M

√
2 − z

a
ds =

∫ 2a

a

√
2 −
(

2 − �2

a2

)
· 1
a

√
a2 + 4�2 d�

=
∫ 2a

a

�

a2

√
a2 + 4�2 d� =

1
8a2

∫ 16a2

4a2

√
a2 + t dt

=
1

8a2

[
2
3

(a2 + t)
3
2

]16a2

4a2

=
1

12a2

{
(17a2)

3
2 − (5a2)

3
2

}

=
17
√

17 − 5
√

5
12

a.

3) By first intersecting the surface O with the planes z = constant, we get∫
O

1
az+9�2

dS =
∫
M

2π�

a

(
2a− �2

a

)
+9�2

ds =
∫ 2a

a

2π�

2a2+8�2
· 1
a

√
a2+4�2 d�

=
π

a

∫ 2a

a

�√
a2+4�2

d� =
π

a

[
1
4

√
a2+4�2

]2a

a

=
π

4a

{√
17a2−

√
5a2
}

=
π

4

(√
17 −

√
5
)

.
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Example 1.14 A surface of revolution O is given in semi polar coordinates (�, ϕ, z) by

� =
√

z2 + 2az, z ∈ [a, 2a], ϕ ∈ [0, 2π],

where a is some positive constant. The meridian curve of the surface is called M.

1) Explain why M is a subset of a conic section, and indicate its type and centrum. Then sketch M.

2) Show that the line element ds on M is given by

ds =

√
2z2 + 4az + a2

z2 + 2az
dz.

3) Compute the surface integral∫
O

|x|(z + a)√
x2 + y2

dS.

4) Explain why O is a subset of a surface of a conic section. Find its type and centrum.

A Conic sections, meridian curve, surface integral.

D If only the surface integral is calculated in semi polar coordinates, the rest is purely standard.

–2

–1

0

1

2

–3 –2 –1 1 2 3

Figure 32: The meridian curve M and the corresponding conic section (dotted) for a = 1.

I 1) We get by a squaring and a rearrangement that M is a subset of the point set given by

(z + a)2 − �2 = a2.

This describes in the whole PZ-plane an hyperbola of centrum (0,−a) and half axes a and a.
2) The line element on M is given by

ds =

√
1 +
(

d�

dz

)2

dz =

√
1 +
(

2z + 2a

2
√

z2 + 2az

)2

dz

=

√
1 +

z2 + 2az + a2

z2 + 2az
dz =

√
2z2 + 4az + a2

z2 + 2az
dz.

 Surface integral
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3) First express the integrand in semi polar coordinates on the surface:

f(x, y, z) =
|x|(z + a)√

x2 + y2
=

�| cos ϕ| (z + a)
�

= | cos ϕ|(z + a).

 Surface integral
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Then the surface integral becomes∫
O

|x|(z+a)√
x2+y2

dS =
∫ 2a

a

{∫ 2π

0

| cos ϕ|(z+a)�(z) dϕ

}√
2z2+4az+a2

z2+2az
dz

= 2
∫ π

2

−π
2

cos ϕ dϕ ·
∫ 2a

a

(z+a)
√

z2+2az ·
√

2z2+4aza2

z2+2az
dz

= 4
∫ 2a

a

(z + a)
√

2z2 + 4az + a2 dz

=
∫ 2a

z=a

√
2z2+4az+a2 d

(
2z2+4az+a2

)
=

2
3

[
(2z2+4az+a2)

3
2

]2a

z=a

=
2
3

{(
8a2+ 8a2 + a2

) 3
2 − (2a2+4a2+a2

) 3
2
}

=
2
3

{(
17a2
) 3

2 − (7a2
) 3

2
}

=
2
3
{17

√
17 − 7

√
7}a3.

4) The curve M is a part of an hyperbola, cf. 1), and the axis of rotation intersects the foci of
the hyperbola. We therefore conclude that O is a subset of an hyperboloid of revolution with
two nets and centrum (0, 0,−a).

We get the equation of the hyperboloid of revolution by replacing �2 by x2+y2 in the expression
from 1),

(z + a)2 − x2 − y2 = a2,

or in its standard form,(
z + a

a

)2

−
(x

a

)2
−
(y

a

)2
= 1.

The surface O it that subset which lies between the planes z = a and z = 2a.

Example 1.15 A surface of revolution O is given in semi polar coordinates (�, ϕ, z) by

0 ≤ ϕ ≤ 2π, a ≤ � ≤ 2a, z = a ln
�

a
,

where a is some positive constant.

1) Sketch the meridian curve M, and find the line element ds on M.

2) Compute the line integral∫
M

1√
a2 + �2

ds.

3) Compute the surface integral∫
O

(
x + a exp

z

a

)
dS.

 Surface integral
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Figure 33: The meridian curve M for a = 1.

A Surface of revolution, meridian curve, line integral, surface integral.

D Standard example.

I 1) The line element ds on M is given by

ds =

√
1 +
(

dz

d�

)2

d� =

√
1 +
(

a

�

)2

d� =

√
a2 + �2

�
d�.

2) By using � as variable it follows from 1) that

∫
M

1√
a2 + �2

ds =
∫ 2a

a

1√
a2 + �2

·
√

a2 + �2

�
d� =

∫ 2a

a

d�

�
= [ln �]2a

a = ln 2.

3) The surface element on O is given by

dS = � dϕds = �

√
a2 + �2

�
dϕ d� =

√
a2 + �2 d� dϕ,

so accordingly the surface integral∫
O

{
x + a exp

(z

a

)}
dS =

∫ 2π

0

{∫ 2a

a

(
� cos ϕ + a exp

(
a ln �

a

a

))√
a2 + �2 d�

}
dϕ

= 0 + 2π

∫ 2a

a

�
√

a2 + �2 d� = π

∫ 2a

�=a

(
a2 + �2

) 1
2 d
(
a2 + �2

)
= π · 2

3

[(
a2 + �2

) 3
2
]2a

�=a
=

2π

3

{(
5a2
) 3

2 − (2a2
) 3

2
}

=
2π

3
(5
√

5 − 2
√

2) a3.
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Example 1.16 A surface F is given by the parametric description

r(u, v) = (eu, ev, u + v) , u2 + v2 ≤ 1.

1) Show that the normal vector of the surface is given by

N(u, v) =
(−ex,−eu, eu+v

)
.

2) Find an equation of the tangent plane of F at the point r(0, 0).

3) Compute the surface integral∫
F

1√
x2 + y2 + e2z

dS.

A Surface integral.

D Use that dS = ‖N(u, v)‖ du dv.

–1

–0.5

0

0.5

1
1

1.5

2

2.5

0.5

1

1.5
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2.5

Figure 34: The surface F .

I 1) We conclude from

∂r
∂u

= (eu, 0, 1) and
∂r
∂v

= (0, ev, 1) ,

that

N(u, v) =
∂r
∂u

× ∂r
∂v

=

∣∣∣∣∣∣∣∣∣∣

ex ey ez

eu 0 1

0 ev 1

∣∣∣∣∣∣∣∣∣∣
=
(−ev,−eu, eu+v

)
.

2) From r(0, 0) = (1, 1, 0) and the normal vector N(0, 0) = (−1,−1, 1) we get the equation of the
tangent plane

0 = N(0, 0, 0) · (x − 1, y − 1, z) = (−1,−1, 1) · (x − 1, y − 1, z) = −x + 1 − y + 1 + z,

thus by a rearrangement

x + y − z = 2.

 Surface integral
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3) From ‖N(u, v)‖2 = e2v + e2u + e2u+2v follows that

∫
F

1√
x2 + y2 + e2z

dS =
∫

u2+v2≤1

√
e2u + e2v + e2u+2v

√
e2u + e2v + e2u+2v

du dv = π · 12 = π.

 Surface integral
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Figure 35: The surface of Example 2.1.1.
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2 Surface area

Example 2.1 Compute in each of the following cases the surface area of a surface F , which is the
graph of a function in two variables, thus

F = {(x, y, z) | (x, y) ∈ E, z = Z(x, y)}.

1) The surface integral
∫
F dS, where

Z(x, y) = 1 + 2x + 2y
√

y, (x, y) ∈ [0, 1] ×
[
11
9

,
44
9

]
.

2) The surface integral
∫
F dS, where

Z(x, y) =
x2

2
+ 3y, hvor − 1 ≤ x ≤ 1 og − 1

6
x2 ≤ y ≤ 1.

3) The surface integral
∫
F dS, where

Z(x, y) =
y

x2 + y2
, hvor 1 ≤ x2 + y2 ≤ 2.

A Surface area in rectangular coordinates.

D Find the weight function

‖N‖ =

√
1 +
(

∂g

∂x

)2

+
(

∂g

∂y

)2

=
√

1 + ‖ 
 g‖2,

and then compute the surface integral with the integrand 1.

Here 
g = (2, 3
√

y), so the weight function is
√

1 + ‖ 
 g‖2 =
√

1 + 4 + 9y =
√

5 + 9y,
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Figure 36: The surface of Example 2.1.2.

and we find the surface integral∫
F

dS =
∫

E

√
5 + 9y dx dy =

∫ 44
9

11
9

√
5 + 9y dy =

1
9
· 2
3

[
(5 + 9y)

3
2

] 44
9

11
9

=
2
27

{
49

3
2 − 16

3
2

}
)

2
27
{
73 − 43

}
=

2
27

(343 − 64) =
2
27

· 279 =
2 · 31

3
=

62
3

.

 Surface area
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Figure 37: The surface of Example 2.1.3.

2) We get from 
g = (x, 3) that
√

1 + ‖ 
 g‖2 =
√

10 + x2. The surface area is∫
F

dS =
∫

E

√
10 + x2 dx dy =

∫ 1

−1

{∫ 1

− x2
6

√
10 + x2 dy

}
dx

=
∫ 1

−1

(
1 +

x2

6

)√
10 + x2 dx =

2
6

∫ 1

0

(6 + x2)
√

10 + x2 dx.

Then by the substitution x =
√

10 sinh t, t = Arsinh
(

x√
10

)
,

∫
F

dS =
1
3

∫ Arsinh( 1√
10

)

0

(6 + 10 sinh2 t) ·
√

10 cosh t ·
√

10 cosh t dt

=
20
3

∫ Arsinh( 1√
10

)

0

(3 + 5 sinh2 t) cosh2 t dt

=
20
3

∫ Arsinh( 1√
10

)

0

{
3
2
(1 + cosh 2t) +

5
4

sinh2 2t

}
dt

=
5
3

∫ Arsinh( 1√
10

)

0

{
6 + 6 cosh 2t +

5
2
(cosh 4t − 1)

}
dt

=
5
6

∫ Arsinh( 1√
10

)

0

{7 + 12 cosh 2t + 5 cosh 4t}dt

=
5
6

[
7t + 6 sinh 2t +

5
4

sinh 4t

]Arsinh( 1√
10

)

0

=
5
6

[
7t + 12 sinh t

√
1 + sinh2 t + 5 sinh t

√
1 + sinh2 t · (1 + 2 sinh2 t)

]Arsinh( 1√
10

)

0

=
5
6

{
7 ln

(
1√
10

+

√
11
10

)
+ 12 · 1√

10
·
√

11
10

+ 5 · 1√
10

·
√

11
10

·
(

1 +
2
10

)}

=
5
6

{
7 ln

(
1 +

√
11√

10

)
+

12
10

·
√

11 +
6
10

·
√

11

}
=

35
12

ln

(
6 +

√
11

5

)
+

3
2
·
√

11.
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3) Here


g =
(
− 2xy

(x2 + y2)2
,

x2 − y2

(x2 + y2)2

)
=

1
(x2 + y2)2

(−2xy, x2 − y2),

so

‖ 
 g‖2 =
1

(x2 + y2)4
(
4x2y2 + (x2 − y2)2

)
=

1
(x2 + y2)2

.

The surface area is∫
F

dS =
∫

E

1
x2 + y2

√
1 + (x2 + y2)2 dx dy = 2π

∫ √
2

0

√
1 + �4

�2
� d�

=
2π

4

∫ √
2

1

√
1 + �4

�4
· 4�3 d� =

π

2

∫ 4

1

1 + t

t
dt =

π

2

∫ √
5

√
2

u · 2u

u2 − 1
du

= π

∫ √
5

√
2

{
1 +

1
2

1
u − 1

− 1
2

1
u + 1

}
du = π

[
u +

1
2

ln
u − 1
u + 1

]√5

√
2

= π

{√
5 −

√
2 +

1
2

ln

(√
5 − 1√
5 + 1

·
√

2 + 1√
2 − 1

)}

= π

{√
5 −

√
2 + ln

(
(
√

5 − 1)(
√

2 + 1)
2

)}

= π{
√

5 −
√

2 + ln(
√

5 − 1) + ln(
√

2 + 1) − ln 2.

Example 2.2 Calculate in each of the following cases the surface area of a surface of revolution O,
which is given by a meridian curve M in the meridian half plane, in which � and z are the rectangular
coordinates.

1) The surface area
∫
O dS, where the meridian curve M is given by the parametric description

(�, z) =
(
2 sin3 t, 3 cos t − 2 cos3 t

)
, t ∈

[
0,

π

2

]
.

2) The surface area
∫
O dS, where the meridian curve N is given by the parametric description

(�, z) =
(
a sin3 t, a cos3 t

)
, t ∈ [0, π].

3) The surface area
∫
O dS, where the meridian curve M is given by the parametric description

(�, z) = (b sin t, a cos t), t ∈ [0, π].

4) The surface area
∫
O dS, where the meridian curve M is given by z2 + �2 = az.

5) The surface area
∫
O dS, where the meridian curve M is given by � = z3 for x ∈ [0, 1].
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Figure 38: The meridian curve M of Example 2.2.1.

A Surface area of a surface of revolution.

D Use either semi polar or spherical coordinates and the area element � dϕds, where ds is the line
element, thus if e.g. z = g(�), then

ds =
√

1 + g′(�)2 d�,

and similarly.

We get from

r(t) =
(
2 sin3 t, 3 cos t − 2 cos3 t

)
that

r′(t) =
(
6 sin2 t · cos t,−3 sin t + 6 cos2 t · sin t

)
,

thus

‖r′(t)‖2 =
(
6 sin2 t · cos t

)2
+
(−3 sin t + 6 cos2 t · sin t

)2
= 36 sin4 t · cos2 +9 sin2 t

(
2 cos2 t − 1

)2
= 9 sin2 t

(
sin2 2t + cos2 2t

)
= 9 sin2 t,

and accordingly

ds = ‖r′(t)‖ dt = 3| sin t| dt = 3 sin t dt for t ∈
[
0,

π

2

]
.

Then∫
O

dS =
∫ 2π

0

{∫ π
2

0

2 sin3 t · 3 sin t dt

}
dϕ = 2π · 6

∫ π
2

0

sin4 t dt

= 3π

∫ π
2

0

{
2 sin2 t

}2
dt = 3π

∫ π
2

0

(1 − cos 2t)2 dt

= 3π

∫ π
2

0

{
1 − 2 cos 2t +

1
2

+
1
2

cos 4t

}
dt = 3π · 3

2
· π

2
=

9π2

4
.
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1)
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Figure 39: The meridian curve M of Example 2.2.2 for a = 1.
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0.5

1
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Figure 40: The meridian curve M of Example 2.2.3 for a = 1 og b = 2.

2) From r(t) = a
(
sin3 t, cos3 t

)
follows that

r′(t) = a
(
3 sin2 t cos t,−3 cos2 t sin t

)
= 3a sin t · cos t(sin t,− cos t),

hence

‖r′(t)‖ = 3a sin t · | cos t|, t ∈ [0, π].

(Remember the absolute value). The line element is

ds = ‖r′(t)‖ dt = 3a sin t | cos t| dt.

Finally, it follows from � dϕ = a sin3 t dϕ that∫
O

dS =
∫ 2π

0

{∫ π

0

a sin3 t · 3a sin t | cos t| dt

}
dϕ

= 2π · 3a2 · 2
∫ π

2

0

sin4 t cos t dt =
2π

5
a2.
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3) Here

ds = ‖r′(t)‖ dt =
√

b2 cos2 t + a2 sin2 t dt =
√

a2 + (b2 − a2) cos2 t dt, t ∈ [0, π],

thus∫
O

dS =
∫ 2π

0

{∫ π

0

b sin t
√

a2 + (b2 − a2) cos2 t dt

}
dϕ = 4πb

∫ 1

0

√
a2 + (b2 − a2)u2 du.

We shall here consider three different cases.

a) If a = b, then

∫
O

dS = 4πa

∫ 1

0

a du = 4πa2,

and the surface area of the sphere is 4πa2.
b) If 0 < b < a, then

∫
O

dS = 4πba

∫ 1

0

√
1 −
(

1 − b2

a2

)
u2 du.
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Then by the substitution

√
1 − b2

a2
u = sin v,

∫
O

dS = 4πab

∫ Arcsin(
q

1− b2

a2 )

0

√
1 − sin2 v · 1√

1 − b2

a2

cos v dv

=
4πab√
1 − b2

a2

∫ Arccos( b
a )

0

cos2 v dv =
2πab√
1 − b2

a2

∫ Arccos( b
a )

0

(1 + cos 2v) dv

=
2πab√
1 − b2

a2

{
Arccos

(
b

a

)
+
[
1
2

sin 2v

]Arccos( b
a )

0

}

=
2πab√
1 − b2

a2

{
Arccos

(
b

a

)
+

√
1 − b2

a2
· b

a

}
=

2πab√
1 − b2

a2

Arccos

(
b

a

)
+ 2πb2.

c) If 0 < a < b, then∫
O

dS = 4πab

∫ 1

0

√
1 +
(

b2

a2
− 1
)

u2 du.

Then by the substitution

√
b2

a2
− 1 u = sinh v,

∫
O

dS = 4πab

∫ Arsinh(
q

b2

a2 −1)

0

√
1 + sinh2 v · 1√

b2

a2
− 1

cosh v dv

=
4πab√

b2

a2

∫ ln

„
b
a +

q
b2

a2 −1

«

0

cosh2 v dv =
2πab√

b2

a2

∫ ln

„
b
a +

q
b2

a2 −1

«

0

(cosh 2v + 1) dv

=
2πab√
b2

a2
− 1

{
ln

(
b

a
+

√
b2

a2
− 1

)
+

√
b2

a2
− 1 · b

a

}

=
2πab√
b2

a2
− 1

ln

(
b

a
+

√
b2

a2
− 1

)
+ 2πb2.

4) It follows from the figure that the meridian curve is a half circle of radius
a

2
. Thus the integral∫

O dS is equal to the surface area of the sphere, i.e.∫
O

dS = 4π
(a

2

)2
= πa2

according to Example 2.2.3 with a = b.
Alternatively,

� =

√(a

2

)2
−
(
z − a

2

)2
, for z ∈ [0.a],
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Figure 41: The meridian curve M of Example 2.2.4 and Example 1.3.8 for a = 1.

in rectangular coordinates, so

ds =

√√√√√√1 +

(
z − a

2

)2
(a

2

)2
−
(
z − a

2

)2 dz =
a

2
1√(a

2

)2
−
(
z − a

2

)2 dz.

Hence∫
O

dS = 2π

∫ a

0

√(a

2

)2
· a

2
· 1√(a

2

)2
−
(
z − a

2

)2 dz = 2π · a

2
· a = πa2.

Alternatively, r = a cos θ, θ ∈
[
0,

π

2

]
, in spherical coordinates, and � = r sin θ = a sin θ cos θ,

and

ds =

√
r2 +

(
dr

dθ

)2

dθ = a dθ,

thus∫
O

dS = 2π

∫ π
2

0

a sin θ cos θ · a dθ = a2π
[
sin2 θ

]π
2

0
= a2π.

5) Since ds =
√

1 + 9z4 dz, we get∫
O

dS = 2π

∫ 1

0

z3
√

1 + 9z4 dz =
2π

4

∫ 1

0

√
1 + 9t dt

=
π

2
· 1
9
· 2
3

[
(1 + 9t)

3
2

]1
0

=
π

27
(10

√
10 − 1).
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Figure 42: The meridian curve M of Example 2.2.5.

Example 2.3 Consider the space curve K given by the parametric description

r(t) =
(
3 cos t − 2 cos3 t, 2 sin3 t, 3 cos t

)
, t ∈

[
0 ,

π

2

]
.

1. Show that the curve has a tangent at the points of the curve corresponding to t ∈
]
0 ,

π

2

]
.

2. Show that the curve has a tangent at the point corresponding to t = 0.

3. Find the length of K.

The curve K is projected onto the (X,Y )-plane in a curve K∗. Let O denote the surface of revolution
which is obtained by rotating the curve K∗ once around the X-axis; and C denotes the cylinder surface
which has K∗ as its leading curve and the Z-axis as its direction of generators, and which is lying
between the curve K and the plane z = −x.

4. Find the area of O.

5. Find the area of C.

A Length of a space curve; area of a surface of revolution and a cylinder surface.

D Calculate r′(t) and show that r′(t) �= 0 in
]
0 ,

π

2

[
. Check what happens for t → 0. Find ‖r′(t)‖.

Finally, compute the surface areas.

I 1) We get by a differentiation

r′(t) =
(−3 sin t + 6 cos2 t sin t, 6 sin2 t cos t,−3 sin t

)
= 3 sin t

(
2 cos2 t − 1, 2 sin t cos t,−1

)
= 3 sin t (cos2t, sin 2t,−1).

Clearly, r′(t) �= 0 for t ∈
]
0 ,

π

2

[
, hence the curve has a tangent in each of the points corre-

sponding to t ∈
]
0 ,

π

2

[
.

2) It follows from

1
3 sin t

r′(t) = (cos 2t, sin 2t,−1) → (1, 0,−1) �= (0, 0, 0) for t → 0,

that the curve has a tangent (actually a “half tangent”) at the point corresponding to t = 0.
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Figure 43: The space curve K and its projection onto the (X,Y )-plane.

3) From

‖r′(t)‖2 = (3 sin t)2 · {cos2 2t + sin2 2t + 1
}

= (3
√

2 sin t)2,

follows that the length of the curve K is
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	 = 3
√

2
∫ π

2

0

sin t dt = 3
√

2[− cos t]
π
2
0 = 3

√
2.

The projection of the curve onto the (X,Y )-plane has the parametric description

r̃′(t) =
(
cos t{3 − 2 cos2 t}, 2 sin3 t, 0

)
, t ∈

[
0 ,

π

2

]
.

By glancing at 1) we get

r̃′(t) = 3 sin t (cos 2t, sin 2t, 0) og ‖r̃′(t)‖ = 3 sin t.

4) The surface area of O is

area(O) =
∫ π

2

0

2πỹ(t) · ‖r̃′(t)‖ dt

= 2π

∫ π
2

0

2 sin3 t · 3 sin t dt = 3π

∫ π
2

0

(
2 sin2 t

)2
dt

= 3π

∫ π
2

0

(1 − cos 2t)2dt = 3π

∫ π
2

0

(1 − 2 cos 2t + cos2 2t) dt

=
3π2

2
− 3π[sin 2t]

π
2
0 +

3π

2

∫ π
2

0

(1 + cos 4t) dt =
3π2

2
+

3π2

4
=

9π2

4
.

5) The surface area of C is

area(C) =
∫ π

2

0

{3 cos t + x(t)} · ‖r̃′(t)‖ dt =
∫ π

2

0

{6 cos t − 2 cos3 t) · 3 sin t dt

= 3
∫ π

2

0

{3 − cos2 t} · sin 2t dt =
3
2

∫ π
2

0

(5 − cos 2t) · sin 2t dt

=
15
2

∫ π
2

0

sin 2t dt − 3
4

∫ π
2

0

sin 4t dt =
15
2

[
−1

2
cos 2t

]π
2

0

+
3
16

[cos 4t]
π
2
0 =

15
2

.

Example 2.4 .

1. Find the length of the curve K given by the parametric description

r(t) =
(
3
(
1 − t2

)2
, 8t3, 0

)
, t ∈ [0, 1].

Choose K as the leading curve for a cylinder surface C with the Z-axis as its direction of the generators.

2. Find the area of that part of C, which lies between the curve K and the plane of equation z = 1+y.

A Curve length; surface area.

D Find ‖r′(t)‖ and integrate. Then find the surface area.

 Surface area
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Figure 44: The space curve K.

I 1) We get from

r′(t) =
(−12t

(
1 − t2

)
, 24t2, 0

)
= 12t

(
t2 − 1, 2t, 0

)
that

‖r′(t)‖2 = (12t)2 · {t4 − 2t2 + 1 + 4t2
}

= (12t)2
(
t2 + 1

)2
,

and thus

‖r′(t)‖ = 12t
(
t2 + 1

)
.

Hence, the arc length is

	 =
∫ 1

0

‖r′(t)‖ dt =
∫ 1

0

12t
(
t2 + 1

)
dt = 6

∫ 1

u=t2=0

(u + 1) du =
[
3u2 + 6u

]1
0

= 9.

2) The surface area is

A =
∫ 1

0

[1 + y]y=8t3 · ‖r′(t)‖ dt =
∫ 1

0

(
1 + 8t3

) · 12t
(
t2 + 1

)
dt

= 	 + 96
∫ 1

0

(
t6 + t4

)
dt = 9 + 96

(
1
7

+
1
5

)
=

1467
35

.

Example 2.5 Find the area of that part C of the cylinder surface of equation x2 + y2 = 9, which is
bounded by the plane z = 0 and the surface of equation z = 1 + x2.

A Area of a part of a cylinder surface.

D Just compute.

I When we integrate along the curve

K : (x, y) = (3 cos ϕ, 3 sin ϕ),

we get

area(C) =
∫
K
(1 + x2) ds =

∫ 2π

0

(1 + 9 cos2 ϕ) · 3 dϕ = 6π + 27π = 33π.
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Example 2.6 Given a curve K in the (X,Z)-plane by

z =
(

x − 4
9

) 3
2

, x ∈ [1, 2].

1) Find the length of K.

2) Find the area of that surface F , which is created when K is rotated once around the Z-axis.

A Curve length, surface area.

D Find the line element

ds =

√
1 +
(

dz

dx

)
dx

and compute
∫
K ds and 2π

∫
K x ds.

0

0.5

1

1.5

2

y

0.5 1 1.5 2

x

Figure 45: The curve K.

I 1) We get from

dz

dx
=

3
2

√
x − 4

9
,

the line element

ds =

√
1 +

9
4

(
x − 4

9

)
dx =

3
2
√

x dx,

and the curve length becomes

	 =
3
2

∫ 2

1

√
x dx = [x

√
x]21 = 2

√
2 − 1.

2) The surface area is according to a formula

area(F) = 2π

∫
K

x ds = 2π · 3
2

∫ 2

1

x
√

x dx = 2π · 3
2
· 2
5
[
x2

√
x
]2
1

=
6π

5
(4
√

2 − 1).

 Surface area



Download free books at BookBooN.com

Calculus 2c-8

 

69  

1

1.5–2

–1

1

2

–2

–1

1

2

Figure 46: The surface of revolution F .

Example 2.7 A cylinder surface C has its generators parallel to the Z-axis and its leading curve K
in the (X,Y )-plane is given by the parametric description

r(t) =
(
t2 − t, t2 + t

)
, t ∈

[
0,

√
3

2

]
.

Find the area of that part F of C, which is bounded by the plane z = 0 and the plane z = 8y − 8x.

A Surface area.

D First find r′(t).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

–0.2

Figure 47: The curve K.

I First note that z = 8y − 8x = 16t ≥ 0 on K. Then

r′(t) = (2t − 1, 2t + 1), ‖r′(t)‖ =
√

2 ·
√

4t2 + 1.
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Figure 48: The surface F .

When we insert into the formula of the area of a cylinder surface with a leading curve, then

area(F) =
∫
K
(8y − 8x) ds =

√
2
∫ √

3
2

0

16t ·
√

4t2 + 1 dt = 2
√

2
[
2
3

(√
4t2 + 1

)3]√
3

2

0

=
4
√

2
3

⎧⎨
⎩
(√

4 · 3
4

+ 1

)3

− 1

⎫⎬
⎭ =

28
√

2
3

.
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Example 2.8 Find an equation of the tangent plane of the graph of the function

g(x, y) =
√

2xy, (x, y) ∈ [1, 4] × [1, 4]

at the point (x, y) = (2, 2). Find the area of the graph.

A Tangent plane and surface area.

D Find the approximating polynomial of at most first degree at the point of contact.

2

3

4

5

1
1.5

2
2.5

3
3.5

4

y

1
1.5

2
2.5

3
3.5

4

x

Figure 49: The graph of f .

An equation of the tangent plane of z = g(x, y) is

z = P1(x, y) = g(2, 2) + 
g(2, 2) · (x − 2, y − 2)

= 2
√

2 +
(√

y

2x
,

√
x

2y

)
(x,y)=(2,2)

· (x − 2, y − 2)

= 2
√

2 +
(

1√
2
,

1√
2

)
· (x − 2, y − 2) = 2

√
2 +

1√
2

(x + y − 4) =
1√
2

x +
1√
2

y,

thus

x + y −
√

2 z = 0.

Then according to some formula, the area of the graph is∫
E

√
1 + ‖ 
 g‖2 dx dy =

∫ 4

1

{∫ 4

1

√
1 +

y

2x
+

x

2y
dx

}
dy

=
∫ 4

1

{∫ 4

1

√
1

2xy
(2xy + y2 + x2) dx

}
dy =

∫ 4

1

⎧⎨
⎩
∫ 4

1

√
(x + y)2

2xy
dx

⎫⎬
⎭ dy

=
∫ 4

1

1√
2y

{∫ 4

1

(
x

1
2 + y x− 1

2

)
dx

}
dy =

1√
2

∫ 4

1

1√
y

[
2
3

x
3
2 + 2y x

1
2

]4
x=1

dy

=
1√
2

∫ 4

1

1√
y

{
2
3

(8 − 1) + 2y(2 − 1)
}

dy =
1√
2

∫ 4

1

{
14
3

y− 1
2 + 2y

1
2

}
dy

=
1√
2

[
28
3

y
1
2 +

4
3

y
3
2

]4
1

=
4

3
√

2
{7(2 − 1) + (8 − 1)} =

28
√

2
3

.
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3 Improper surface integrals

Example 3.1 Given the meridian curve M of the parametric description

� = a cos t, z = a{ln(1 + sin t) − ln cos t − sin t}, t ∈
[
0,

π

2

[
When this is rotated we obtain a surface of revolution O (half of the pseudo-sphere), which stretches
into infinity along the positive part of the Z-axis.
Find the integral which gives the area of that part of O, which corresponds to [0, T ], where T <

π

2
.

Then find the area of the pseudo-sphere by letting T → π

2
.

A Surface area of an infinite surface of revolution; improper surface integral.

D First find the curve element ds on M. Then compute the surface area of OT , i.e. the surface
corresponding to t ∈ [0, T ], where T <

π

2
. This means that we shall compute

2π

∫
OT

�(t) ds.

Finally, take the limit T → π

2
−.

I First calculate

r′(t) = a

(
− sin t,

cos t

1 + sin t
+

sin t

cos t
− cos t

)
= a

(
− sin t,

cos t · (1 − sin t)
1 − sin2 t

+
sin t

cos t
− cos t

)

= a

(
− sin t,

1 − sin t + sin t − cos2 t

cos t

)
= a sin t · (−1, tan t).

–1

–0
.8

–0
.6

–0
.4

–0
.20

y

1
2

3
4

x

Figure 50: The meridian curve of the pseudo-sphere.
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Hence

ds = ‖r′(t)‖ dt = a| sin t|
√

1 + tan2 t dt = a

∣∣∣∣ sin t

cos t

∣∣∣∣ dt = a tan t dt,

and accordingly,

area (OT ) = 2π

∫
OT

�(t) ds = 2π

∫ T

0

a cos t · a tan t dt

= 2πa2

∫ T

0

sin t dt = 2πa2(1 − cos T ).

Finally, by taking the limit we find the improper surface area

areal(O) = lim
T→π

2 −
areal (OT ) = 2πa2.

Remark. Notice that the “half” pseudo-sphere” has the same surface area as the usual upper half
sphere of radius a. ♦

Example 3.2 Check in each of the following cases if the given surface integral is convergent or di-
vergent; in case of convergency, find the value.

1) The surface integral
∫
F

1
(a + 4z)2

dS over the surface F given by az = x2 + y2, (x, y) ∈ R
2.

2) The surface integral
∫
F

x2

z2 + a2
dS over the surface F given by x2 + y2 = a2, z ∈ R.

3) The surface integral
∫
F y2 exp

(
−|z|

a

)
dS over the surface F given by x2 + y2 = a2, z ∈ R.

4) The surface integral
∫
F

1
z(x + y)

dS over the surface F given by z =
√

2xy, (x, y) ∈ [a,+∞[2.

A Improper surface integral.

D First analyze why the integral is improper. Then truncate the surface and split it into the positive
and the negative part of the integrand. Finally take the limit.

I 1) The surface is a paraboloid of revolution.

z =
1
a

(x2 + y2) =
1
a

� ≥ 0.

The integrand is ≥ 1
a2

> 0 everywhere on the surface.

The surface is described as the graph of the equation z =
1
a

(x2 + y2), so the weight function
becomes√

1 +
(

∂z

∂x

)2

+
(

∂z

∂y

)2

=

√
1 +
(

2x

a

)2

+
(

2y

a

)2

=

√
1 +

4
a2

�2.
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We choose the truncated domain in polar coordinates as 0 ≤ � ≤ R. It follows from the above
that the area element is

dS =

√
1 +

4
a2

�2 � d� dϕ,

hence the surface integral over the truncated surface FR is

∫
FR

1
(a + 4z)2

dS =
∫ 2π

0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∫ R

0

1(
a +

4�2

a

)2

√
1 +

4
a2

� d�

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dϕ

=
2π

a2

∫ R

0

{
1 +

4
a2

�2

}− 3
2

· 1
2
· a2

4
· 4
a2

· 2� d�

=
2π

a2
· a2

8

⎡
⎢⎢⎣− 2√

1 +
4
a2

�2

⎤
⎥⎥⎦

R

0

=
π

2

⎛
⎜⎜⎝1 − 1√

1 +
4
a2

R2

⎞
⎟⎟⎠ .
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This expression clearly converges for R → +∞, thus the improper surface integral is convergent
of the value

∫
F

1
(a + 4z)2

dS = lim
R→+∞

π

2

⎛
⎜⎜⎝1 − 1√

1 +
4
a2

R2

⎞
⎟⎟⎠ =

π

2
.

2) The surface is an infinite cylinder surface with the circle in the XY -plane of centrum (0, 0) and
radius a as its leading curve. By using semi polar coordinates we get

x = a cos ϕ, y = a sin ϕ, z = z, ϕ ∈ [0, 2π], z ∈ R,

and

dS = a dϕdz.

The integrand is positive, so we choose the truncation |z| ≤ A. Then∫
FA

x2

z2 + a2
dS =

∫ 2π

0

{∫
−A

a2 cos2 ϕ

z2 + a2
· a dz

}
dϕ

=
∫ 2π

0

cos2 ϕdϕ · a2

∫ A

−A

1

1 +
(z

a

)2 · 1
a

dz = a2π · 2Arctan
(

A

a

)
.

This expression converges for A → +∞, and we conclude that the improper surface integral is
convergent with the value∫

F

x2

z2 + a2
dS = lim

A→+∞
a2π · 2Arctan

(
A

a

)
= a2π2.

3) By using semi polar coordinates it is seen that

x = a cos ϕ, y = a sin ϕ, z = z, ϕ ∈ [0, 2π], z ∈ R.

The surface element is

dS = a dϕdz.

The integrand is positive everywhere, so we choose the truncation |z| ≤ A. Then∫
FA

y2 exp
(
−|z|

a

)
dS =

∫ 2π

0

{∫ A

−A

a2 sin2 ϕ · exp
(
−|z|

a

)
a dz

}
dϕ

= a3 · π · 2
∫ A

0

exp
(
−z

a

)
dz = 2a4π ·

[
− exp

(
−z

a

)]A
0

= 2πa4

{
1 − exp

(
−A

a

)}
.

This expression is clearly convergent for A → +∞, thus the improper surface integral is con-
vergent with the value∫

F
y2 exp

(
−|z|

a

)
dS = lim

A→+∞

∫
FA

y2 exp
(
−|z|

a

)
dS = 2πa4.
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4) When the surface is the graph of z =
√

2xy for x, y ≥ a, then the surface element is

dS =

√
1 +
(

∂z

∂x

)2

+
(

∂z

∂y

)2

dx dy =
√

1 +
y

2x
+

x

2y
dx dy

=

√
2xy + y2 + x2

2xy
dx dy =

x + y√
2xy

dx dy.

The integrand is given on the surface F by

1
z(x + y)

=
1√

2xy(x + y)

which is clearly positive, because x, y ≥ a.
For every A > a we define the truncation by a ≤ x, y ≤ A. Then the surface integral over the
corresponding truncated surface FA is∫

FA

1
z(x + y)

dS =
∫ A

a

{∫ A

a

1√
2xy(x + y)

· x + y√
2xy

dx

}
dy

=
1
2

{∫ A

a

dx

x

}
·
{∫ A

a

dy

y

}
=

1
2

{
[ln t]Aa

}2

=
1
2

{
ln
(

A

a

)}2

→ +∞ for A → +∞.

We conclude that the improper surface integral is divergent.

5) The surface is the same as in Example 3.2.4, so the surface element is

dS =
x + y√

2xy
dx dy.

The integrand is on the surface F given by

1
z2xy

=
1

2xy · xy
=

1
2
· 1
x2

· 1
y2

.

This is positive, so we shall again use the truncation a ≤ x, y ≤ A. Then∫
FA

1
z2xy

dS =
∫ A

a

{∫ A

a

1
2
· 1
x2

· 1
y2

· x + y√
2xy

dx

}
dy

=
1

2
√

2

∫ A

a

x− 3
2 dx ·

∫ A

a

y− 5
2 dy +

1
2
√

2

∫ A

a

x− 5
2 dx ·

∫ A

a

y− 3
2 dy

=
1√
2

[
− 2√

x

]A
a

·
[
−2

3
· 1
y
√

y

]A
a

=
2
√

2
3

(
1√
a
− 1√

A

)
·
(

1
a
√

a
− 1

A
√

A

)

→ 2
√

2
3

· 1√
a
· 1
a
√

a
=

2
√

2
3a2

for A → +∞.

The improper surface integral converges towards the value
∫
F

1
z2xy

dS =
2
√

2
3a2

.
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Example 3.3 Check in each of the following cases if the given surface integral is convergent or di-
vergent; in case of convergency, find its value.
Let S denote the sphere of centrum (0, 0, 0) and radius a, while F is given by az = x2+y2, x2+y2 ≤ a2.

1)
∫
S

1
a − z

dS,

2)
∫
S

√
a

|z| dS,

3)
∫
F

1
a − z

dS,

4)
∫
F

√
a

z
dS.

A Improper surface integrals.

D Analyze why the integral is improper. Since the integrands are ≥ 0 in all cases, we shall only find
some nice truncations of the surface.

I 1) Since |z| ≤ a on S, the integrand is
1

a − z
> 0 on S \ {(0, 0, a)}. The integrand tends towards

+∞, when (x, y, z) → (0, 0, a) on S.
When we use spherical coordinates on S,

x = a cos ϕ · sin θ, y = a sinϕ · sin θ, z = a cos θ,

for

ϕ ∈ [0, 2π], θ ∈ [0, π],

it is well-known that

dS = a2 sin θ dϕ dθ.

The singular point (0, 0, a) corresponds to θ = 0, hence we choose the truncation θ ∈ [ε, π],
where ε > 0 corresponds to the subsurface Sε. When we integrate over Sε we get∫

Sε

1
a − z

dS =
∫ 2π

0

{∫ π

ε

1
a − a cos θ

a2 sin θ dθ

}
dϕ

= 2πa

∫ π

ε

sin θ

1 − cos θ
dθ = 2πa [ln(1 − cos θ)]πε

= 2πa{ln 2 − ln(1 − cos ε)} = 2πa ln
2

2 sin2 ε
2

= 4aπ ln
1

sin
ε

2

→ +∞ for ε → 0+,

and the improper surface integral is divergent.
2) In this case the integrand is > 0 on S0, where S0 is the set of points on S, which is not contained

in the XY -plane, where the integrand is not defined. We use again spherical coordinates. Due
to the symmetry it suffices to consider the domain

Sε : ϕ ∈ [0, 2π] og θ ∈
[
0,

π

2
− ε
]
.
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From z = a cos θ and dS = a2 sin θ dθ dϕ, it follows by insertion that∫
Sε

√
a

|z| dS =
∫ 2π

0

{∫ π
2 −ε

0

√
a

a cos θ
· a2 sin θ dθ

}
dϕ

= 2πa2

∫ π
2 −ε

0

sin θ√
cos θ

dθ = 2πa2
[
−2

√
cos θ
]π

2 −ε

0

= 4πa2{1 −
√

sin ε} → 4πa2 for ε → 0 + .

We conclude that the improper surface integral is convergent.
For symmetric reasons the value is∫

S

√
a

|z| dS = lim
ε→0+

2
∫
Sε

√
a

|z| dS = 2 · 4πa2 = 8πa2.
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3) The surface is the graph of z =
1
a

(x2 + y2) =
�2

a
, so the area element is

dS =

√
1 +
(

∂z

∂x

)2

+
(

∂z

∂y

)2

dx dy =

√
1 +
(

2x

a

)2

+
(

2y

a

)2

dx dy

=
1
a

√
a2 + 4(x2 + y2) dx dy =

1
a

√
a2 + 4�2 · � d� dϕ.

The integrand is the same as in Example 3.3.1, and since z ≤ a on F , it is positive for z < a.
We choose the truncation in polar coordinates by

Fε : 0 ≤ � ≤ a − ε, ϕ ∈ [0, 2π].

Then by insertion,

∫
Fε

1
a − z

dS =
∫ 2π

0

⎧⎪⎨
⎪⎩
∫ a−ε

0

1

a − �2

a

· 1
a

√
a2 + 4�2 � d�

⎫⎪⎬
⎪⎭ dϕ

= 2π

∫ a−ε

0

�

a2 − �2

√
a2 + 4�2 d� ≥ aπ

∫ a−ε

0

1
a2 − �2

· 2� d�

= aπ
[− ln

(
a2 − �2

)]a−ε

0

= aπ
{
ln a2 − ln

(
a2 − (a − ε)2

)}→ +∞
for ε → 0+, and the improper surface integral is divergent.

4) The singular point is (0, 0, 0). We choose the truncation

Fε : ϕ ∈ [0, 2π], � ∈ [ε, a],

and

z =
�2

a
> 0, dS =

1
a

√
a2 + 4�2 � d� dϕ.

Then by insertion

∫
Fε

√
a

z
dS =

∫ 2π

0

⎧⎨
⎩
∫ a

ε

√
a2

�2
· 1
a

√
a2 + 4�2 � d�

⎫⎬
⎭ dϕ

= 2πa

∫ a

ε

√
1 +
(

2�

a

)2

d�

[
2�

a
= sinh t

]

= 2πa

∫ a

�=ε

√
1 + sinh2 t · a

2
cosh t dt = πa2

∫ Arsinh 2

Arsinh 2ε
a

cosh2 t dt

=
πa2

2

∫ Arsinh 2

Arsinh 2ε
a

(1 + cosh 2t) dt =
πa2

2

[
t +

1
2

sinh 2t

]Arsinh 2

Arsinh 2ε
a

=
πa2

2

{
Arsinh 2 − Arsinh

2ε

a

}
+

πa2

2

[
sinh t

√
1 + sinh2 t

]Arsinh 2

Arsinh 2ε
a

→ πa2

2
Arsinh 2 +

πa2

2
{ln(2 +

√
5) + 2

√
5}
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for ε → 0+, and the improper surface integral converges towards the value∫
F

√
a

z
dS =

πa2

2
{ln(2 +

√
5) + 2

√
5}.

Example 3.4 Check if the surfaces of the bodies of revolution of the Examples 2.3 and 2.4 in
Calculus 2c-6, Example of Space Integrals, can be given a finite area.
(These shall not be computed).

A Improper surface integrals.

D Consult Example 2.3 and 2.4 of Calculus 2c-6, Examples of Space Integrals. Since we are only
dealing with areas, the integrand is automatically positive. Truncate suitably before the compu-
tation of the surface integral, and then take the limit.

I Example 2.3. The curve K of the equation

y2(a − x) = x3

is rotated around the asymptote x = a.
For symmetric reasons it suffices to consider y ≥ 0, thus

y = x

√
x

a − x
= x

3
2 (a − x)−

1
2 .

It was shown in Example 2.3 that

dy

dx
=

1
2

√
x

(a − x)3
· (3a − 2x).

The length of the circle Cx (around the line x = a) at the height y(x) is 2π(a − x), [In fact,
0 ≤ x < a].
If we truncate at the height y(x0) corresponding to some x0 ∈ [0, a[, and remember the sym-
metry around y = 0 we get the corresponding surface area,

2
∫ x0

0

length (Cx) · dy

dx
dx

= 2
∫ x0

0

2π(a − x) · 1
2

√
x

(a − x)3
· (3a − 2x) dx = 2π

∫ x0

0

√
x

a − x
{a + 2(a − x)} dx

= 2π

∫ x0

0

{
a

√
x

a − x
+ 2
√

x(a − x)
}

dx, 0 < x0 < a.

We conclude that the surface has a finite area. The only problem is the term
√

x

a − x
in the

integrand, and

0 ≤
√

x

a − x
≤ √

a · 1√
a − x

for 0 < x < a,

and∫ x0

0

dx√
a − x

= [−2
√

a − x]x0
0 = 2{√a −√

a − x0},
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which converges towards 2
√

a for x0 → a. Since the area of the surface is smaller than this
value, we conclude that the improper surface integral exists.

Remark. One can in fact find the exact value. Putting t =
x

a − x
we get

x =
at

t + t
= a − a

t + 1
,

thus

dx =
a

(t + 1)2
dt,

and

2π

∫
a

√
x

a − x
dx = 2πa

∫ √
t · a

(t + 1)2
dt = 2πa2

∫
u · 1

(u2 + 1)2
· 2u du

= 2πa2

{
− u

u2 + 1
+
∫

1
u2 + 1

du

}
= 2πa2

{
Arctan u − u

u2 + 1

}

= 2πa2

⎧⎪⎪⎨
⎪⎪⎩Arctan

√
x

a − x
−

√
x

a − x
x

a − x
+ 1

⎫⎪⎪⎬
⎪⎪⎭ = 2πa2

{
Arctan

√
x

a − x
− 1

a

√
x(a − x)

}
,

hence by taking the limit

2π

∫ a

0

a

√
x

a − x
dx = 2πa2

{π

2
− 0
}

= π2a2.

The latter integral is calculated by noting that y =
√

x(a − x) for 0 ≤ x ≤ a describes a half
circle of centrum

a

2
and radius

a

2
, thus

4π

∫ a

0

√
x(a − x) dx = 4π · 1

2
· π
(a

2

)2
=

π2a2

2
.

Summarizing, the improper surface area is convergent, and its value is

π2a2 +
π2a2

2
=

3
2

π2a2. ♦

Example 2.4. When the curve � =
a2

a2 + z2
, z ∈ R, is rotated around the Z-axis, we get an

infinite surface which at the height z is cut into a circle C(x) of radius �(z), thus

length(C(x)) = 2π� =
2πa3

a2 + z2
.

By putting

Fk = {(x, y, z) ∈ F | |z| ≤ ka}, k > 0,
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we get

area (Fk) = 2
∫ ka

0

length(C(x)) dz = 4πa3

∫ ka

0

1
a2 + z2

dz

= 4πa2

∫ k

0

1
1 + t2

dt = 4πa2 Arctan k

→ 4πa2 · π

2
= 2π2a2 for k → +∞.

The improper surface area exists and its value is

area(F) = 2π2a2.
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Example 3.5 A surface F is given by the equation

z = 1 + x2 − y2, (x, y) ∈ R
2.

1. Indicate the type of the surface and its vertices.

2. Find an equation of the tangent plane of F through the point (2, 1, 4).

Let q be a positive number. Let F(q) denote the subset of F , which is given by

z = 1 + x2 − y2, x2 + y2 ≤ q2.

3. Compute the surface integral

I(q) =
∫
F(q)

1
(z + 3x2 + 5y2)3/2

dS.

4. Explain shortly that

I =
∫
F

1
(z + 3x2 + 5y2)3/2

dS

is an improper surface integral and prove that I is divergent.

A Surface; tangent plane; surface integral; improper surface integral.

D Identify the type of the surface; e.g. set up a parametric description (or use a formula) and find
find the field of the normal vectors. Calculate the surface integral by a reduction theorem. Notice
that the integrand is positive, and finally take the limit.
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Figure 51: The surface F(q) for q = 3 with the projection D(q) onto the (x, y)-plane.

I 1) It follows from the rearrangement

z − 1 = x2 − y2

that the surface is an equilateral hyperbolic paraboloid with its vertex at (0, 0, 1).

 Improper surface integrals



Download free books at BookBooN.com

Calculus 2c-8

 

84  

2) It follows from the parametric description

r(x, y) =
(
x, y, 1 + x2 − y2

)
, (x, y) ∈ R

2,

that

∂r
∂x

× ∂r
∂y

=

∣∣∣∣∣∣∣∣∣∣

ex ey ez

1 0 2x

0 1 −2y

∣∣∣∣∣∣∣∣∣∣
= (−2x, 2y, 1).

Then we check if the point (2, 1, 4) lies on F :

1 + x2 − y2 = 1 + 4 − 1 = 4 = z,

thus (2, 1, 4) ∈ F .

The normal vector is in this point

(−2x, 2y, 1) = (−4, 2, 1) = N,

and an equation of the tangent plane is

0 = N · (x − 2, y − 1, z − 4) = (−4, 2, 1) · (x − 2, y − 1, z − 4)
= −4x + 2y + z + 8 − 2 − 4 = −4x + 2y + z + 2,

hence by a rearrangement,

z = 4x − 2y − 2.

3) The parametric domain for F(q) is the disc in the (x, y)-plane

D(q) = {(x, y) | x2 + y2 ≤ q2}.
Since z = 1 + x2 − y2 on F(q), it follows by the theorem of reduction that

I(q) =
∫
F(q)

1
(z+3x2+5y2)3/2

dS =
∫

D(q)

‖N(x, y)‖
(1+4x2+4y2)3/2

dx dy

=
∫

D(q)

(1+4x2+4y2)1/2

(1+4x2+4y2)3/2
dx dy =

∫
D(q)

1
1+4(x2+y2)

dx dy

=
∫ 2π

0

{∫ q

0

1
1 + 4�2

� d�

}
dϕ = 2π · 1

8
ln
(
1 + 4q2

)
=

π

4
ln
(
1 + 4q2

)
.

4) Now F is unbounded, so I is an improper surface integral. The integrand is positive on F ,
hence it suffices to take the limit q → +∞ for I(q). Then

I = lim
q→+∞ I(q) =

π

4
lim

q→+∞ ln
(
1 + 4q2

)
= +∞,

which proves that the improper surface integral is divergent.
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